
Copyright 2014 Coverity, Inc.

Static Analysis in Industry
Andy Chou, CTO and Cofounder	

Coverity, Inc.

Copyright 2014 Coverity, Inc.

About Coverity
• World’s largest independent company

focused on static analysis development
testing tools.	

• Coverity founded in 2003 by four CS
PhD students and Prof. Dawson Engler.	

• As of 2014:	

• 300 employees	

• 1100 customers	

• One round of venture funding in 2007	

• Cash flow positive	

• Headquarters in San Francisco with

offices in Boston, Seattle, Calgary, Tokyo,
London.

Coverity Headquarters, San Francisco

Copyright 2014 Coverity, Inc.

About This Talk

• How is static analysis used in industry?	

• What attributes does the market want in a static

analysis tool?	

• How does Coverity analysis work?	

!

• …I don’t know all the answers!

Copyright 2014 Coverity, Inc.

It’s not about finding bugs. It’s about fixing them.

Copyright 2014 Coverity, Inc.

Case Study: Company X
• In 2009, Company X evaluated Coverity on 9m lines of C/C++ code.	

• Over 10,000 defects were discovered and Company X licensed Coverity for 3

years.	

• But mistakes were made:	

• There was no plan for addressing defects.	

• Defects had no owners.	

• Management did not set clear expectations.	

• Slow build/analysis times.	

• Infrequent weekly analysis runs.	

• At the end of year 3, no progress was made, and the renewal business was in
jeopardy.

Copyright 2014 Coverity, Inc.

Crisis and Renewal
• Despite this failure, Company X decided to

try again with new champions who believed
in static analysis.	

• Criteria were established for success:	

• Must fit into workflow without

distraction.	

• All new defects must be automatically

assigned an owner.	

• Defects assignment results in notification,

with clear expectations for triage and
resolution by the assignee.	

• Added release criteria to enforce zero
new defects.	

• Focused effort on the most critical
defects (10,000 down to 3,000).

© Copyright 2013 Xilinx
.

! Present progress at monthly
OPS reviews

! Broadcast a daily top 10 defect
owner list

Page 16

How to reach the release criterion

© Copyright 2012 Xilinx

Copyright 2014 Coverity, Inc.

Social Pressure
• A baseline was set at the prior

release version.	

• New defects introduced after the
baseline were assigned an owner by
using SCM integration.	

• A daily top 10 new defect owner list
was broadcast to the entire
development team.	

• This put social pressure on
individuals to now appear on the list.
Keeping “Coverity Clean” became a
priority.

© Copyright 2013 Xilinx
.

! Present progress at monthly
OPS reviews

! Broadcast a daily top 10 defect
owner list

Page 16

How to reach the release criterion

© Copyright 2012 Xilinx

Copyright 2014 Coverity, Inc.

Constant Vigilance

• After the push, Coverity was
upgraded and improved
checkers uncovered 1,000
new defects.	

• New defects from the
upgrade were not addressed
immediately.	

• However, defects in new code
were continually resolved as
code was added or changed.

© Copyright 2013 Xilinx
.

Coverity SIPD Status (Dec 3, 2013)

Page 17

! Outstanding defects include ~350 in
3rd party code

! Renewed effort begins in January

Coverity Trends
lines of code

outstanding defects

resolved

new checkers added

Copyright 2014 Coverity, Inc.

Company Y:	

The Value of a Memorable Bug

if(tRate != 0.0 && p->Qty() != 0.0) {
 mFactor = fabs(p->Cost()/eRate/p->Qty());
}

if(tRate != 0.0 && p->Qty() != 0.0) {
 mFactor = fabs(p->Cost()/tRate/p->Qty());
}

Copyright 2014 Coverity, Inc.

Company Y:	

The Value of a Memorable Bug

if(eRate != 0.0 && p->Qty() != 0.0) {
 mFactor = fabs(p->Cost()/tRate/p->Qty());
}

Copy-paste error: "tRate" in "p->Cost()/tRate" looks like a
copy-paste error. Should it say "eRate" instead?

if(tRate != 0.0 && p->Qty() != 0.0) {
 mFactor = fabs(p->Cost()/tRate/p->Qty());
}

“We decided that you guys deserve a beer for this one”

Copyright 2014 Coverity, Inc.

Customers with bigger code bases have more money.

Copyright 2014 Coverity, Inc.

MLOCs and BLOCs

A
gg

re
ga

te
 M

LO
C

1

100

10000

<100KLOC 100-500KLOC 500k-1MLOC >1MLOC

140

30

73

17

3,218

455
628

108

Commercial Open Source

• This represents ~30% of
Coverity customers	

• 4.5 billion LOC	

• 314 customers	

• 7,535 projects	

• Duplicate projects within 5%

LOC eliminated.	

• 95% of the code is C/C++	

• Open Source data is collected
from the Coverity Scan project	

• 260 million LOC	

• 789 open source projects

Copyright 2014 Coverity, Inc.

Open Source Projects in Scan with >1MLOC

Project LOC
InsightSo*wareCons

or0um 1,528,932

ScummVM 1,339,755
man0d 1,273,032

TortoiseGit 1,267,639
XBMC 1,261,638

RyzomCore 1,203,776
MariaDB 1,183,763
digiKam 1,158,653

Postgresql9 1,144,407
FreeSWITCH 1,132,527

TC 1,125,919
TrinityCore 1,116,027
MPC-‐HC 1,108,151
Mesa 1,104,103
0	 A.D. 1,103,170
KDE 1,071,697
NuPIC 1,070,950

openWNS 1,042,486
cloudstack 1,027,683
gstreamer 1,023,454

Project LOC
NetBSD 16,068,290
FreeBSD 12,649,589
LibreOffice 9,017,270

Linux 8,578,254
ACE+TAO+CIAO

+DAnCE 7,626,092

OpenOffice 7,357,498
PostgreSQL 6,649,825
Thunderbird 5,066,354

Firefox 4,997,817
reactos 4,875,945
haiku 4,164,654
llvm 4,014,963
Wine 3,682,735

Wireshark 2,878,801
FxOS 2,561,607

osadl-‐real0me 2,548,656
GNURadio 2,340,142
globus 2,270,022
logfs 2,236,126
gcc 1,898,975

Samba 1,871,346
blender 1,739,394

XenProject 1,546,718

Copyright 2014 Coverity, Inc.

C/C++ Code by Industry
LO

C

0

300,000,000

600,000,000

900,000,000

1,200,000,000
Co

m
pu

te
r &

 N
et

w
or

kin
g

Te
lec

om
m

un
ica

tio
ns

So
ftw

ar
e

&
In

te
rn

et

Au
to

m
ot

ive

M
ob

ile
 D

ev
ice

s

H
ea

lth
ca

re

G
am

ing

Se
m

ico
nd

uc
to

r

Co
ns

um
er

 E
lec

tro
nic

s

Fin
an

cia
l S

er
vic

es

In
du

str
ial

 A
ut

om
at

io
n

D
ef

en
se

Po
w

er
 &

 E
ne

rg
y

Co
ng

lo
m

er
at

es

O
th

er

Copyright 2014 Coverity, Inc.Copyright 2014 Coverity, Inc.

Copyright 2014 Coverity, Inc.

What are the Market Segments?
• C/C++ static analysis for quality and security

accounts for > 85% of Coverity’s revenue. This
segment of the market is likely north of $100m.	

• Security static analysis, especially for web
applications in Java and C#, is also a large market
dominated by HP/Fortify and is likely north of
$120m.

Copyright 2014 Coverity, Inc.

Customers want a product solution.

Copyright 2014 Coverity, Inc.

The Analysis WorkflowProduct Architecture for HR Purposes

Front End
Compilation

FE Team

Analysis
Core Analysis

Analysis Team

Coverity
Connect (CC)
Defect Management

CIM Team

 1 Gc_rc gc_pbkdf2_sha1 (const char *P, size_t Plen,
 2 const char *S, size_t Slen,
 3 unsigned int c,
 4 char *DK, size_t dkLen)
 5 {
 6 char U[20] T[20];
 7 unsigned int hlen = 20, u, l, r, i, k;
 8 int rc; char *tmp; size_t tmplen
 9
 10 if (c == 0)
 11 return GC_PKCS5_INVALID_ITERATION_COUNT;
 12 r = dkLen - (l - 1) * hLen;
 13
 14 memcpy (tmp, S, Slen);

IDEs
Eclipse/Visual Studio

IDE Team

PMO
Infrastructure/Project

Management
PMO Team

Ops Team
Operations/

Administration
Ops Team

UX Team
Systems Architecture

User Experience
UX Team

Coverity Confidential: Do Not Copy or Distribute. Copyright 2013 Coverity, Inc. 4

3 IDEs55 compiler
translators

158 checkers
4 Languages

Copyright 2014 Coverity, Inc.

Breadth of Defect Coverage
Resource Leaks
• Memory leaks	

• Resource leak in object	

• Incomplete delete	

• Microsoft COM BSTR memory leak	

Uninitialized variables
• Missing return statement	

• Uninitialized pointer/scalar/array read/write	

• Uninitialized data member in class or structure	

Concurrency Issues
• Deadlocks	

• Race conditions	

• Blocking call misuse	

Integer handling issues
• Improper use of negative value	

• Unintended sign extension	

Improper Use of APIs
• Insecure chroot	

• Using invalid iterator	

• printf() argument mismatch

Memory-corruptions
• Out-of-bounds access	

• String length miscalculations	

• Copying to destination buffers too small	

• Overflowed pointer write	

• Negative array index write	

• Allocation size error	

Memory-illegal access
• Incorrect delete operator	

• Overflowed pointer read	

• Out-of-bounds read	

• Returning pointer to local variable	

• Negative array index read	

• Use/read pointer after free	

Control flow issues
• Logically dead code	

• Missing break in switch	

• Structurally dead code	

Error handling issues
• Unchecked return value	

• Uncaught exception	

• Invalid use of negative variables

Copyright 2014 Coverity, Inc.

Breadth of Defect Coverage
C/C++ Security
• Integer overflow	

• Loop bound by untrusted source	

• Write/read array/pointer with untrusted value	

• Format string with untrusted source	

Performance inefficiencies
• Big parameter passed by value	

• Large stack use	

Security best practices
• Possible buffer overflow	

• Copy into a fixed size buffer	

• Calling risky function	

• Use of insecure temporary file	

• Time of check/time of use	

• User pointer dereference	

Other
• Copy-paste errors	

Program hangs
• Infinite loop	

• Double lock or missing unlock	

• Negative loop bound	

• Thread deadlock	

• sleep() while holding a lock	

Null pointer differences
• Dereference after a null check	

• Dereference a null return value	

• Dereference before a null check	

Code maintainability issues
• Multiple return statements	

• Unused pointer value	

Web Security
• Cross-site Scripting	

• SQL Injection	

• App server misconfiguration	

• LDAP Injection	

• Script injection	

• Other forms of injection

Copyright 2014 Coverity, Inc.

Product Architecture

C/C++
Compiler

Java
Compiler

C#
Compiler

Unified
Database

AST, Source Code
Annotations, etc.

QA/SA
Analysis

Analysis
Results

Issue
Repository

Atomic
Commit

Coverity Connect
(CIM)

Policy Manager
Web Application

Eclipse
Plugin

Visual St.
Plugin

C/C++
Source
Code

Java
Source
Code

C#
Source
Code

Product Boundary

Test
Execution

Data

SCM/Test
Data

Processing

Source
Code

Repository

Build Interceptor

TA
Analysis

Data
Collection Analysis Issue

Management

Copyright 2014 Coverity, Inc.

Product Extensions

Analysis
Results

Issue
Repository

Atomic
Commit

Coverity Connect
(CIM)

Policy Manager
Web Application

Eclipse
Plugin

Visual St.
Plugin

Source
Code

Repository

Bug
Tracking
System

Email
System

Import

Ownership
Assignment

Email
Notification

Bug
Synchron.

Product Boundary Professional
Service Scripts

3rd Party
Analysis
Results

ConverterDocumented
3rd Party
Format

Copyright 2014 Coverity, Inc.

Performance
Code Base MLOC Time (min)

qt-x11-free-3.3.2 0.6 9.4
Proprietary X 1.1 31

firefox-2.0 1.8 14
Proprietary Y 2.4 35

kde-3.5.5 6.0 42
openoffice-2.4 6.7 130

Linux-3.x 7.7 38
Proprietary Z 8.0 107

Memory: 1GB + 0.5GB per worker

Copyright 2014 Coverity, Inc.

Choosing what not to report is at least as
important as finding more defects.

Copyright 2014 Coverity, Inc.

Checker Development Methodology

Guess Compute
Consequences

Compare
Experiment

(Richard Feynman)

Copyright 2014 Coverity, Inc.

Checker Development Methodology

Scalability test lab	

!

Customer test lab	

!

Trials

Manually triage new
results	

!

Random weekly
triage	

!

Churn analysis	

!

Customer reaction

Internal ideas	

!

Customer requests	

!

Research literature

Checker Idea Compute Evaluate

Copyright 2014 Coverity, Inc.

C/C++ Defect Density
• Commercial defect density is in

the same ballpark as open
source.	

• Open source is used to tune
the analysis, so a lower FP rate
out of the box is to be
expected.	

• Some open source projects
have a long history of fixing
defects.	

• Commercial data is biased
towards newer customers who
have turned on data collection.

D
ef

ec
ts

 /
10

00
 L

O
C

0.0

0.3

0.6

0.8

1.1

<100KLOC 100-500KLOC 500k-1MLOC >1MLOC

0.65
0.7

0.5

0.35

0.98

1.1

0.84

0.96

Commercial Open Source

Copyright 2014 Coverity, Inc.

Demo

Copyright 2014 Coverity, Inc.

Styles of Analysis
• Intraprocedural checks, both flow sensitive and insensitive	

• Interprocedural control flow based	

• Bottom-up, context sensitive, path sensitive	

• Examples: Null pointer dereferences, buffer overruns	

• Statistical	

• Adds global statistical data as evidence in addition to visible control/data

flows.	

• Examples: Return value checking, race conditions	

• Global dataflow	

• Geared towards security checks around use of tainted data	

• Examples: XSS, SQL injection

Copyright 2014 Coverity, Inc.

Interprocedural Analysis

f()a() b() malloc()c() d()

Copyright 2014 Coverity, Inc.

Callgraph Construction

• Class Hierarchy Analysis
(CHA) for callgraph
construction	

• Unsound, custom alias
analysis for function
pointers	

• Recursive cycles broken,
with heuristics to detect
likely false edges from
inaccurate virtual call
resolution

f()

a() b()

malloc()c() d()

Copyright 2014 Coverity, Inc.

Checkers Pass 1 Pass 2
OVERRUN 1 0

NULL_RETURNS 1 2
...

Intraprocedural Analysis

• Each function is analyzed by a sequence of independent checkers, which
analyze each function in turn.	

• Each checker has its own abstraction of program state. States between
checkers are not mingled, but there are some parameterized, reusable
abstractions that some checkers share.	

• The most common checker architecture explicitly traverses control flow,
avoids widening and merging of states, and uses a 2-pass mechanism for FPP.

c()
Defect
Reports

Copyright 2014 Coverity, Inc.

False Path Pruning

checker(c) (checker ○ FPP)(c)

Pass 1 Pass 2

defect

no defect

Next function

Intervals: x ∈ [Min, Max]
Disequality: x ∉ { Values }
Masks: (x & MASK) = 0
Branches: if(expr) … if(expr)
Exceptions: throw new E -> catch(E)
Increment: for(i=0; i<12; i+=2)
Non-null: *p ... if(p)
Types: vcall consistency on paths

An alternative implementation uses a SAT solver.

Copyright 2014 Coverity, Inc.

Summaries

• Each function is also analyzed by a set of
derivers that generate summaries that called
models

c() Derivers
DEREF
ARRAY_ACCESS
NO_ESCAPE
...

ℳc

Copyright 2014 Coverity, Inc.

Interprocedural Analysis
• Models contain control flow edges

and model events.	

• Models are substituted for function
calls by modifying the control flow
graph at each callsite.	

• Model size is aggressively limited by
restricting the locations that can be
addressed to a limited number of
interfaces	

• Memory use constrained by limiting
analysis to one function at a time,
along with the models for all callees.	

• Highly parallelizable based on the
callgraph structure

a()

ℳc ℳd

f()

b()

malloc()

Copyright 2014 Coverity, Inc.

Library Models

• Library functions have
built-in models	

• These models are manually
written in C code using
special primitives	

• Users can also create
library models to address
libraries where no source
is available to override the
automatically derived
summary.

a()

ℳc ℳd

f()

b()

malloc()

Copyright 2014 Coverity, Inc.

“We have to put off fixing static analysis bugs
because we’ve got fires to fight.”

Copyright 2014 Coverity, Inc.

Do People Care About Quality?

Measurable? Visible? Cost or
Opportunity? Best Practice?

Improve Quality No No Cost No

Speed up
Development Yes Yes Opportunity No

Reduce Risks No No Cost Some

Increase Agility Some Yes Opportunity Yes

Lower Costs Yes Yes Cost Some

This is a coarse generalization based on observations. Specific companies will differ.

Copyright 2014 Coverity, Inc.

Challenges
• Economies of scale are hard to achieve with a highly fragmented market	

• Diversity of languages, frameworks, coding styles, defect types, libraries,
design patterns, compilers	

• Keeping up with changes in all dimensions is expensive	

• It’s hard to tune analysis without a large corpus of source code	

• Companies are very reluctant to share their commercial code.	

• Outside of C/C++, representative open source code is not always

available. E.g. Java and C# web applications.	

• Large companies are reluctant to put critical source code in the cloud

Copyright 2014 Coverity, Inc.

Opportunities

• Integrating multiple sources of evidence	

• Leveraging the software supply chain	

• The rise of GitHub	

• De facto standards	

• Collaboration between academia and industry

Copyright 2014 Coverity, Inc.

–Software Development Manager, Intuit

“We came to find bugs. We stayed because it made
us better software developers.”

Copyright 2014 Coverity, Inc.

Engage with Coverity
• Academic licensing program	

• Access to Coverity Quality
Advisor for classroom use
and limited research use.	

• Coverity Scan	

• Free scanning of open
source projects.	

• http://scan.coverity.com

http://scan.coverity.com

Copyright 2014 Coverity, Inc.

Q&A
!

Andy Chou	

andy@coverity.com	

Twitter @_achou

mailto:andy@coverity.com

Copyright 2014 Coverity, Inc.

Appendix

Copyright 2014 Coverity, Inc.

Coverity on Coverity

0"

50"

100"

150"

200"

250"

300"

350"

400"

Alameda" Berkeley" Carmel" Davis" Eureka" Fresno"

Defects'Addressed'by''
Coverity'Quality/Security'Advisor''

High"Impact" Medium"Impact" Low"Impact"

