Static Analysis In Industry

S d2@hou COfanad EelellcEk
Covertty, Inc.

About Coverity

« World's largest independent company
focused on static analysis development

testing tools.

» Coverity founded in 2003 by four CS
PhD students and Prof. Dawson Engler.

e skoli)0l 4
« 300 employees
| 100 customers
« One round of venture funding in 2007/

» Cash flow positive

* Headquarters in San Francisco with
offices in Boston, Seattle, Calgary, Tokyo, Coverity Headquarters, San Francisco
London.

Copyright 2014 Coverity, Inc.

About [his Talk

How Is static analysis used In industry?

VWhat attributes does the market want in a static
analysis tool!

How does Coverrty analysis work?

... dont know all the answers!

t's not about finding bugs. It's about fixing them.

Copyright 2014 Coverity, Inc.

Case Study: Company X

» In 2009, Company X evaluated Coverity on 9m lines of C/C++ code.

» Over 10,000 defects were discovered and Company X licensed Coverity for 3
years.

» But mistakes were made:

» There was no plan for addressing defects.

» Defects had no owners.

» Management did not set clear expectations.

» Slow build/analysis times.

* Infrequent weekly analysis runs.

» At the end of year 3, no progress was made, and the renewal business was In

jeopardy.

Copyright 2014 Coverity, Inc.

Crisis and Renewal

» Despite this failure, Company X decided to
try again with new champions who believed
In static analysis. 3

« Criteria were established for success:

« Must fit into workflow without
2k

distraction.

» All new defects must be automatically

assigned an owner. -

» Defects assignment results in notification,
with clear expectations for triage and
resolution by the assignee. Ok

« Added release criteria to enforce zero N QY ¥

new defects. — Outstanding Issue Count — Resolved

« Focused effort on the most critical ———

defects (10,000 down to 3,000).

Copyright 2014 Coverity, Inc.

Social Pressure

A baseline was set at the prior
release version.

New defects introduced after the
baseline were assigned an owner by
using SCM integration.

A daily top 10 new defect owner list
was broadcast to the entire
development team.

This put social pressure on
individuals to now appear on the list.
Keeping “Coverity Clean” became a
priorrity.

Copyright 2014 Coverity, Inc.

Coverity

Top 10 offenders
(sorted by defects)

NOTE: The Coverity results below are based on a dif

OWNER DEFECTS
] 168
— 59
ani 11

bh- 10

Pr

8
sC 8
eu 8

Pr

-

ST 5

A full list of defects by owners may be found here, ai

Constant Vigilance

» After the push, Coverity was
upgraded and improved
checkers uncovered |,000
new defects.

Coverity Trends code —>

« New defects from the
upgrade were not addressed
immediately. ———

outstanding defects

S~

new checkers added

« However, defects in new code .

Y b] b b
N4 & N N N

\) Ky 3
W\ '0@\ 6\\9\

were continually resolved as ¢ &
COde WaS added Or‘ Changedl — Qutstanding Issue Count — Resolved = Code Lines (LOC)

0 o
\ R
O o
N W

Copyright 2014 Coverity, Inc.

Company Y
The Value of a Memorable Bug

if(tRate != 0.0 && p—>Qty() != 0.0) {
mFactor = fabs(p->Cost()/tRate/p->Qty());
}

if(tRate != 0.0 && p—>Qty() != 0.0) {
mFactor = fabs(p->Cost()/eRate/p->Qty());

}

Copyright 2014 Coverity, Inc.

Company Y
The Value of a Memorable Bug

if(tRate != 0.0 && p—>Qty() != 0.0) {
mFactor = fabs(p->Cost()/tRate/p—>Qty());
}

Copy-paste error: "tRate" 1in "p->Cost()/tRate" looks like a
copy-paste error. Should it say "eRate" 1instead?

if(eRate != 0.0 && p—>Qty() != 0.0) {
mFactor = fabs(p->Cost()/tRate/p—>Qty());
}

“We decided that you guys deserve a beer for this one”

Copyright 2014 Coverity, Inc.

Customers with bigser code bases have more money.

Copyright 2014 Coverity, Inc.

MLOCs and BLOCSE

SR REepresents ~ 3076 of
Coverity customers

Sebllion LOC

10000

* 34 customers

B rprojects

* Duplicate projects within 5% 'OO

LOC eliminated.
« 95% of the code is C/C++

Aggregate MLOC

« Open Source data Is collected
from the Coverrty Scan project

e 260 million LOC <100KLOC 100-500KLOC 500k-IMLOC ~ >IMLOC

« /89 open source projects B Commercial [l Open Source

Copyright 2014 Coverity, Inc.

Open Source

NetBSD
FreeBSD
LibreOffice
Linux
ACE+TAO+CIAO
+DANCE
OpenOffice
PostgreSQL
Thunderbird
Firefox
reactos
haiku
llvm
Wine
Wireshark
FxOS
osadl-realtime
GNURadio
globus
logfs
gcc
Samba
blender
XenProject

Copyright 2014 Coverity, Inc.

LOC
16,068,290
12,649,589

95017,270
8,578,254

7,626,092

7,357,498
6,649,825
5,066,354
4,997,817
4,875,945
4,164,654
4,014,963
3,682,735
2,878,801
2,561,607
2,548,656
2,340,142
e 200:002
2,236,126
1,898,975
1,871,346
1,739,394
1,546,718

InsightSoftwareCons

ortium
ScummVM
mantid
TortoiseGit
XBMC
RyzomCore
MariaDB
digiKam
Postgresql9
FreeSWITCH
TC
TrinityCore
MPC-HC
Mesa
0 A.D.
KDE
NuPIC
openWNS
cloudstack
gstreamer

’rojects In Scan with > |MLOC

LOC
175287982

13800
1,273,032
1,267,639
1,261,638
1,203,776
1. 188 763
1,158,653
1,144,407
1,132,527
1,125,909
1,116,027
1,108,151
1,104,103
1,103,170
1,071,697
1,070,950
1,042,486
1,027,683
1,023,454

ASHIO

- S91BJOWIO|3UOD)

- AZJ2UT %9 JOMOY

- 9SU9JR(]
UOIBWOINY [RlISNPU

- SOJIAJISS [RIDUBUI

$JIUOJIDD|T JoWNSUOD)

- JOIPNPUODIISS
- duiuen)

- SJedy}|eoH
- SSJIAS(] 3|IGO|A|
. SAIIOWOINY

19UJS1U|) UBMUOG

SUONEDIUNWWODR|R |

SUPJOMISN] % JoINdwoD)

C/C++ Code by Industry

1,200,000,000
900,000,000
600,000,000
300,000,000

DICH

Copyright 2014 Coverity, Inc.

A
GARMIN. O]KYOCER3 6

TosHIBA Panasonic

|1tar]s, @mazoncom i@ ,.
CISCO L/ I@

WILLIAMS-SONOMA

EMCZ vmware
GO 0O gle Adobe w

YaHoO!

where information lives®

/CO?\

L/ Bloomber

TOYOTA EDYA NASDAQ » J
NYSE Euronext.

N EC Deutsche Bank

f SIEMENS @ . W BARCLAYS
H0eT %‘Medtl’o“ic AVIVA FARGO HSBC <) l4 DirectEdge

Copyright 2014 Coverity, Inc.

What are the Market Segments?

» C/C++ static analysis for quality and security
accounts for > 85% of Coverity's revenue. This
segment of the market is likely north of $100m.

* Security static analysis, especially for web
applications in Java and C#, Is also a large market

dominated by HP/Fortity and is likely north of
$120m.

Customers want a pregget solution.

Copyright 2014 Coverity, Inc.

The Analysis Workflow

6 cha l
uns ki s

8 int X

9
10 if (c == 0)
11 return GC_PKCS5_INVALID_ITERATION COUNT;

2 r = dklen - (1 - 1) * hlen;

3

4 memcpy (tmp, S, Slen);

: Coverity
Front End Analysis
Compilation :> Core AnVaIysis :> Connect (CC)

FE Team Analysis Team Defect Management
CIM Team

U

IDEs

Eclipse/Visual Studio
IDE Team

55 compller Dol dnedaErs

IDE
translators : :

4 Languages

Copyright 2014 Coverity, Inc.

Breadth of Defect Coverage

Resource Leaks

« Memory leaks

- Resource leak in object

* Incomplete delete

* Microsoft COM BSTR memory leak
Uninitialized variables

« Missing return statement

« Uninttialized pointer/scalar/array read/write
« Uninttialized data member in class or structure
Concurrency Issues

* Deadlocks

+ Race conditions

* Blocking call misuse

Integer handling issues

* Improper use of negative value

« Unintended sign extension

Improper Use of APIs

* Insecure chroot

« Using invalid rterator

* printf() argument mismatch

Copyright 2014 Coverity, Inc.

Memory-corruptions

+ Out-of-bounds access

* String length miscalculations

« Copying to destination buffers too small
« Overflowed pointer write

* Negative array index write

* Allocation size error
Memory-illegal access

* Incorrect delete operator

« Overflowed pointer read

* Out-of-bounds read

« Returning pointer to local variable
* Negative array index read

« Use/read pointer after free
Control flow issues

* Logically dead code

« Missing break in switch

* Structurally dead code

Error handling issues

« Unchecked return value

« Uncaught exception

* Invalid use of negative variables

Breadth of Defect Coverage

Program hangs C/C++ Security
* Infinite loop * Integer overflow
* Double lock or missing unlock * Loop bound by untrusted source
* Negative loop bound * Write/read array/pointer with untrusted value
* Thread deadlock * Format string with untrusted source
* sleep() while holding a lock Performance inefficiencies
Null pointer differences * Big parameter passed by value
R Ecreieienice after a null check * Large stack use
* Dereference a null return value Security best practices
* Dereference before a null check » Possible buffer overflow
Code maintainability issues - Copy into a fixed size buffer
* Multiple return statements - Calling risky function
* Unused pointer value « Use of insecure temporary file
Web Security * Time of check/time of use
* Cross-site Scripting User pointer dereference
« SOQL Injection Other
* App server misconfiguration » Copy-paste errors

* LDAP Injection
* Script injection
» Other forms of injection

Copyright 2014 Coverity, Inc.

Product Archrtecture

2

A
C/C++
Source
Code

Y
f—or

Java
Source >
Code
y

Joldaoiayu] pling

—
(—

C#
Source
Code
v

Product Boundary

C/C++
Compiler

Java '
Compiler

C#
Compiler

o
)

Unified
Database

AST, Source Code

QA/SA
Analysis

Annotations, etc.

—

SCM/Test
Data
Processing

Source Test

Code
Repository

Data

Execution

TA
Analysis

N

Y
)

Analysis
Results

\/

l Atomic

i Commit

A

Coverity Connect

(CIM)

Policy Manager

Web Application

e
Issue
Repository

Eclipse
Plugin

Visual St.
Plugin

Issue
Management

Data

. Analysi
Collection nalyss

Copyright 2014 Coverity, Inc.

Product Extensions

Product Boundary Professional
Coverity Connect Service Scripts
(CIM) .
Policy Manager Ownership
Web Application / Assignment

Email
Notification

Source
Code
Repository

TN
]

Issue
Repository

Analysis || Atomic
Results Commit

A Ew
Bug Bug
Eclipse Visual St. Synchron. Ew
Import Plugin Plugin System

1 J

3
3rd Party

Analysis
Results

Documented
3rd Party
Format

Converter |<—

Copyright 2014 Coverity, Inc.

Performance

Code Base MLOC Time (min)
qt-x| | -free-3.3.2 0.6 LA
Proprietary X s 3
firefox-2.0 .8 |4
Proprietary Y ity B9
kde-3.5.5 6.0 20
openoffice-2.4 6./ | 30
Linux-3.x Tl 38
Proprietary Z 8.0 107

Memory: | GB + 0.5GB per worker

Copyright 2014 Coverity, Inc.

Choosing what not to report Is at least as
important as finding more defects.

Copyright 2014 Coverity, Inc.

Checker Development Methodology

Compare
Experiment

* Compute
o Consequences »

(Richard Feynman)

Checker Development Methodology

Checker Idea Compute Fvaluate

Manually triage new
results
Internal ideas Scalability test lab

Random weekly
Customer requests Customer test lab triage

Research literature Trials Churn analysis

Customer reaction

Copyright 2014 Coverity, Inc.

C/C++ Defect Density

Commercial defect density Is In
the same ballpark as open
source.

Open source Is used to tune
the analysis, so a lower FP rate
out of the box Is to be
expected.

Defects / 1000 LOC

Some open source projects
have a long history of fixing
defects.

Commercial data is biased
towards newer customers who ' <100KLOC 100-500KLOC 500k-IMLOC >IMLOC
have turned on data collection.

B Commercial [Open Source

Copyright 2014 Coverity, Inc.

emo

Copyright 2014 Coverity, Inc.

Styles of Analysis

Intraprocedural checks, both flow sensitive and insensitive
Interprocedural control flow based

 Bottom-up, context sensitive, path sensitive

« Examples: Null pointer dereferences, buffer overruns
Statistical

» Adds global statistical data as evidence in addition to visible control/data
flows.

« Examples: Return value checking, race conditions
Global dataflow
» (Geared towards security checks around use of tainted data

s Examples: XSS, SOL injection

Copyright 2014 Coverity, Inc.

Interprocedural Analysis

a() b() c() d() f() malloc()

Callgraph Construction

» Class Hierarchy Analysis
(CHA) for callgraph

() .
/ \ construction

a() b () . Unsognd,custom alias
analysis for function
/ \ pointers
c() d() malloc() - Recursive cycles broken,

with heuristics to detect
ikely false edges from
iInaccurate virtual call
resolution

Copyright 2014 Coverity, Inc.

Intraprocedural Analysis

C () OVERRUN | 0

NULL_RETURNS | o) *

» Each function Is analyzed by a sequence of independent checkers, which
analyze each function in turn.

Defect
Reports

» Each checker has its own abstraction of program state. States between
checkers are not mingled, but there are some parameterized, reusable
abstractions that some checkers share.

+ The most common checker architecture explicitly traverses control flow,
avoids widening and merging of states, and uses a 2-pass mechanism for FPP

Copyright 2014 Coverity, Inc.

ralse Path Pruning

galssi Pase
defect
checker(c) » (checker o FPP) (c)
no defect
Intervals: x € [Min, Max]
v Disequality: x ¢ { Values }
NE e ction Masks: (x & MASK) = 0

Branches: if(expr) .. if(expr)

Exceptions: throw new E -> catch(E)
Increment: for(i=0; 1<12; i+=2)
Non-null: *p ... if(p)

Types: vcall consistency on paths

An alternative implementation uses a SAT solver.

Copyright 2014 Coverity, Inc.

Summaries

DEREF
ou ARRAY ACCESS
C Crivers \no Escape

» Each function is also analyzed by a set of
derivers that generate summaries that called
models

AMc

Copyright 2014 Coverity, Inc.

Interprocedural Analysis

a()

AN

AMc

Copyright 2014 Coverity, Inc.

()
/ \
b ()

malloc ()

« Models contain control flow edges

and model events.

« Models are substituted for function

calls by modifying the control flow
graph at each callsite.

« Model size Is aggressively imited by

restricting the locations that can be
addressed to a limited number of
interfaces

« Memory use constrained by limrting

analysis to one function at a time,
along with the models for all callees.

« Highly parallelizable based on the

callgraph structure

Library Models

» Library functions have
bullt-in models

()
/ \ + These models are manually
wrrtten in C code using

a() b() special primitives

/ \ « Users can also create
M M

v ibrary models to address
malloc() ibraries where no source
s avallable to override the
automatically derived
summary.

Copyright 2014 Coverity, Inc.

“We have to put off fixing static analysis bugs
because we've got fires to fight.”

Copyright 2014 Coverity, Inc.

Do People Care About Qualrty?

Cost or

Measurable? Visible!? Cpperumig Best Practice?
Improve Quality No No Cost No
e Lp Yes Yes Opportunity No
Development
Reduce Risks No No Cost Some
Increase Agility Some lies - Dejpelriiy Yes
Lower Costs Yes Yes Cost Some

This is a coarse generalization based on observations. Specific companies will differ.
Copyright 2014 Coverity, Inc.

Challenges

» Economies of scale are hard to achieve with a highly fragmented market

* Diversity of languages, frameworks, coding styles, defect types, libraries,
design patterns, compilers

» Keeping up with changes In all dimensions Is expensive
* [t's hard to tune analysis without a large corpus of source code
» Companies are very reluctant to share their commercial code.

» Outside of C/C++, representative open source code Is not always
avallable. E.g.]Java and C# web applications.

 Large companies are reluctant to put critical source code In the cloud

Copyright 2014 Coverity, Inc.

Opportunities

* Integrating multiple sources of evidence

* Leveraging the software supply chain

he rise of GitHub

 De facto standards

» Collaboration between academia and industry

“We came to find bugs. We stayed because it made
us better software developers.’

—Software Development Manager, Intuit

Copyright 2014 Coverity, Inc.

Engage with Coverrty

» Academic licensing program

» Access to Coverity Qualrty
Advisor for classroom use
and limited research use.

» Coverrty Scan

* Free scanning of open

selllsee bio|eCts.

» http://scan.coverity.com

Copyright 2014 Coverity, Inc.

http://scan.coverity.com

Copyright 2014 Coverity, Inc.

Q&A

Andy Chou
andy@coverity.com

Twitter @_achou

mailto:andy@coverity.com

Appendix

Copyright 2014 Coverity, Inc.

Coverity on Coverity

Defects Addressed by
Coverity Quality/Security Advisor

400

350
300
250
200
150
100

50

Alameda Berkeley Carmel Davis Eureka Fresno

M High Impact ¥ Medium Impact Low Impact

Copyright 2014 Coverity, Inc.

