
Language-integrated query using comprehension syntax:
state of the art, open problems, and work in progress

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Sam Lindley
University of Edinburgh
Sam.Lindley@ed.ac.uk

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Abstract
Comprehension syntax has proved to be a powerful tool for embed-
ding query language features into strongly-typed functional lan-
guages. This work may also be applicable to other programming
models (data-parallel, GPU, MapReduce) and deserves to be better-
known to the data-centric programming community. This talk will
give a technical overview of the highlights in the development of
monadic comprehensions, particularly focusing on language de-
signs, theory, and systems, identify current open problems, and dis-
cuss some current work.

1. The state of the art
Ideas from programming language theory, including monads and
comprehensions, have played an important role in the development
of current approaches to language-integrated query, such as Mi-
crosoft’s LINQ. The Nested Relational Calculus (NRC) of Bune-
man et al. [1] provides an elegant foundation for query languages
based on monadic comprehensions over collection types such as
sets, lists and bags. We will survey language designs for query in-
tegration, underlying conservativity and normalization results, and
implemented systems in this area. This abstract briefly summarizes
related work, omitting technical detail that will be presented in the
talk.

1.1 Language designs
NRC’s use of collection types helps mitigate the impedance mis-
match between programming language and database, but there is
still a semantic mismatch: there are some things that programs can
do that queries cannot (and potentially vice versa). For example,
we cannot print to the console from inside a query, and we cannot
use recursion within a query (though we may want to use recursion
to build queries).

One default solution is to simply disallow allow recursion/effects
(Kleisli), or allow them but fail at runtime if expectations are vi-
olated (F#, C#). These systems do not provide a guarantee that a
given piece of code generates a single or statically bounded number
of queries. This can lead to query avalanches (or the N + 1 query
problem), where for example to evaluate a relational join of two ta-
bles, the program loads the contents of one table and then issues N
queries on the second table, instead of issuing a single join query.
Ferry [10] does provide a bound on the number of queries that will
be generated if query generation succeeds, but if the query expres-
sion attempts to use recursion or some other forbidden feature, it
can still fail at run time.

The approach taken in C# for LINQ supports query-like opera-
tions as expressions, which are syntactic sugar for (quoted) opera-
tions on collection types, which in turn are transformed to SQL by
LINQ implementations. Similarly, LINQ in F# 3.0 is implemented
explicitly using quotation [19] and computation expressions [18].

The Links system [6] initially followed an ad hoc approach
similar to Kleisli. Currently it uses a type-and-effect system [5,
14], where the “effects” characterize the environment in which
a piece of code can be run (database, host language, or either).
The programmer can require the typechecker to verify that an
expression will generate exactly one query at run time, using the
query keyword. This feature is important for obtaining predictable
performance.

Other language designs that have been explored (not explicitly
based on comprehensions) include defining ad hoc language ex-
tensions to include SQL or query-like syntax explicitly within the
programming language, as in SML# [16], or using row types to em-
bed SQL-like operators as a domain-specific embedded language,
as in Ur [4].

1.2 Expressiveness and conservativity results
NRC allows writing queries that are not literally translatable to
SQL, because they involve intermediate nested structures. Conser-
vativity results for NRC mean that any flat–flat query expression
(one that maps flat input data to flat output data) is equivalent to a
query that only manipulates flat tables. Such results are important
because flat–flat NRC queries can be translated easily to SQL.

Wong’s proof of conservativity [22] was not the first proof of
such a property, but in contrast to previous proofs based on seman-
tic arguments [17], Wong’s proof gave a straightforward rewriting
algorithm for normalizing a flat–flat query to a form isomorphic to
SQL; this idea formed the basis of the Kleisli system [23].

Since then, conservativity has been extended in several ways.
Van den Bussche gave a proof of simulation of nested relational al-
gebra by flat relational algebra [21], showing that any nested query
can be simulated by n flat queries, where n is the number of col-
lection types appearing in the result of the query. The proof is con-
structive and gives an explicit translation, but to our knowledge this
approach has never been implemented or experimentally evaluated,
nor extended to bags or lists.

Wong also considered sum types and simple (first-order) lambda
abstraction, but his proof did not handle higher-order terms or al-
low sum types or functions as query results. Wong’s normalization
approach was extended to allow higher-order functions within the
query by Cooper [5], and this approach has been refined in other
work [3, 14]. More recently, Giorgidze et al. [9] have considered
another representation for algebraic data types, and Grust and Ul-
rich proposed handling function values using defunctionalization
[13]. These techniques do allow functions and algebraic data type
values as query results.

1.3 Systems
Wong [23] introduced Kleisli, a system for data integration based
on comprehension syntax. Kleisli was used to solve the twelve so-
called ’impossible queries’ identified by a US Department of En-

1 2014/1/11



System Language Model Sums? Higher-order? Nested? Grouping? Bounded? Proof?
Kleisli [23] Kleisli Set, bag, list 0 - - 0 0 +
Links [6] Links Bag 0 + - - + +

LINQ [15, 19] C#, F# Bag - 0 - - - -
Ferry (LINQ) [11] C#, F# List 0 0 + + - -
Ferry (Links) [20] Links List 0 + + + + -

Database-Supported Haskell [8, 9] Haskell List + 0 + + + -
P-LINQ [3] F# Bag - + - + - -
T-LINQ [3] F# Bag - + - - + +

Links + Shredding (in progress) Links Bag 0 + + - + +

Table 1. Summary of comprehension-based systems for language-integrated query.

ergy Bioinformatics Summit. A related system called K2 became
part of a popular biomedical data integration product [7].

Links [6] initially followed the Kleisli approach, and attempted
to identify parts of programs that could be turned into queries au-
tomatically. Cooper [5] showed how to generalize this approach to
handle queries that use higher-order functions in Links, and Lind-
ley and Cheney [14] presented an alternative approach based on
row types (which is the current approach adopted in Links). We
subsequently [3] showed how to adapt this approach to LINQ as
implemented in F#, using a quotation-based language design to em-
bed queries instead of effects. The T-LINQ calculus in that paper
provides strong guarantees but does not handle grouping and aggre-
gation, while the P-LINQ library shows that our approach works
well with LINQ in practice (including grouping and aggregation)
but does not yet offer a formal guarantee.

Grust et al. [10] have introduced Ferry, an implementation of
nested relational calculus that employs a loop-lifting technique
originally developed for XQuery to LINQ. The Ferry approach uses
a SQL:1999 query optimizer called Pathfinder [12] as a backend,
and has been adapted to LINQ [11] and Links [20]. There is no
published proof of correctness of either Pathfinder or Ferry’s loop-
lifting algorithm.

Table 1 summarizes the features of the different systems and
characterizes their support for features such as set, bag, and list
collections; higher-order queries; nested query results; grouping
and aggregation; bounded-query guarantees; and availability of
correctness proofs. As the table suggests, no one system combines
all of the potentially desirable features. Among the systems, only
Ferry provides support for nested query results, and no current
system supports all collection types (set, bag, list), higher-order
queries, nesting, and grouping.

2. Open problems and current work
We are interested in relating effect-based and quotation-based code,
as investigated in a recent paper [2], and more generally, in com-
pilation of the effect-based approach used in Links. We are cur-
rently investigating a shredding algorithm for handling nested data
based on normalization; extending this approach to handle aggre-
gation and grouping is an open problem. Proving correctness of
Ferry’s loop lifting, and formalizing and verifying Pathfinder, are
also open problems. Measuring the usability of these approaches is
also an interesting open problem. Finally, it may be of interest to
adapt these techniques to cover other computational models, such
as data parallelism, GPU programming or MapReduce instead of
SQL.

References
[1] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of pro-

gramming with complex objects and collection types. Theor. Comput.
Sci., 149(1), 1995.

[2] J. Cheney, S. Lindley, G. Radanne, and P. Wadler. Effective quotation.
In PEPM, 2014. To appear.

[3] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-
integrated query. In ICFP, 2013.

[4] A. J. Chlipala. Ur: statically-typed metaprogramming with type-level
record computation. In PLDI, 2010.

[5] E. Cooper. The script-writer’s dream: How to write great SQL in your
own language, and be sure it will succeed. In DBPL, 2009.

[6] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: web program-
ming without tiers. In FMCO, 2007.

[7] S. B. Davidson, J. Crabtree, B. P. Brunk, J. Schug, V. Tannen, G. C.
Overton, and C. J. Stoeckert, Jr. K2/Kleisli and GUS: Experiments in
integrated access to genomic data sources. IBM Syst. J., 40(2):512–
531, Feb. 2001.

[8] G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers. Haskell boards
the Ferry - database-supported program execution for Haskell. In IFL,
number 6647 in LNCS, pages 1–18. Springer-Verlag, 2010.

[9] G. Giorgidze, T. Grust, A. Ulrich, and J. Weijers. Algebraic data types
for language-integrated queries. In DDFP, pages 5–10, 2013.

[10] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry: Database-
supported program execution. In SIGMOD, June 2009.

[11] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe LINQ compi-
lation. PVLDB, 3(1), 2010.

[12] T. Grust, J. Rittinger, and J. Teubner. Pathfinder: XQuery off the
relational shelf. IEEE Data Eng. Bull., 31(4), 2008.

[13] T. Grust and A. Ulrich. First-class functions for first-order database
engines. In DBPL, 2013. http://arxiv.org/abs/1308.0158.

[14] S. Lindley and J. Cheney. Row-based effect types for database inte-
gration. In Proceedings of the 8th ACM SIGPLAN workshop on Types
in language design and implementation, TLDI ’12, 2012.

[15] Microsoft. Query expressions (F# 3.0 documentation), 2013.
http://msdn.microsoft.com/en-us/library/vstudio/-
hh225374.aspx, accessed March 18, 2013.

[16] A. Ohori and K. Ueno. Making Standard ML a practical database
programming language. In ICFP, pages 307–319. ACM, 2011.

[17] J. Paredaens and D. V. Gucht. Converting nested algebra expressions
into flat algebra expressions. ACM Trans. Database Syst., 17(1), 1992.

[18] T. Petricek and D. Syme. Syntax Matters: Writing abstract computa-
tions in F#. Pre-proceedings of TFP, 2012.
http://www.cl.cam.ac.uk/~tp322/drafts/notations.pdf.

[19] D. Syme. Leveraging .NET meta-programming components from F#:
integrated queries and interoperable heterogeneous execution. In ML,
2006.

[20] A. Ulrich. A Ferry-based query backend for the Links programming
language. Master’s thesis, University of Tübingen, 2011.

[21] J. Van den Bussche. Simulation of the nested relational algebra by
the flat relational algebra, with an application to the complexity of
evaluating powerset algebra expressions. Theor. Comput. Sci., 254(1-
2), 2001.

[22] L. Wong. Normal forms and conservative extension properties for
query languages over collection types. J. Comput. Syst. Sci., 52(3),
1996.

[23] L. Wong. Kleisli, a functional query system. J. Funct. Program.,
10(1), 2000.

2 2014/1/11


