
Towards a Core Calculus for XQuery 3.0
Combining navigational and pattern-matching approaches

Giuseppe Castagna1 Hyeonseung Im2 Kim Nguyễn2 Véronique Benzaken2
1CNRS, PPS, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France

2LRI, Université Paris-Sud, Orsay, France

Abstract
XML processing languages can be classified according to whether
they extract XML data by paths or pattern matching. In the former
category one finds XQuery, in the latter XDuce and CDuce. The
strengths of one category correspond to the weaknesses of the other.
In this work, we propose to bridge the gap between two of these
languages: XQuery and CDuce. To this end, we extend CDuce
so as it can be seen as a succinct core λ-calculus that captures
XQuery 3.0 programs. The extensions we consider essentially allow
CDuce to implement XPath-like navigation expressions by pattern
matching and to precisely type them. The encoding of XQuery 3.0
into the extension of CDuce provides a formal semantics and a
sound static type system for XQuery 3.0 programs.

1. Motivations
With the establishment of XML as a standard for data representa-
tion and exchange, a wealth of XML-oriented programming lan-
guages have emerged. They can be classified into two distinct
classes according to whether they extract XML data by applying
paths or patterns. The strengths of one class correspond to the weak-
nesses of the other. In this work, we propose to bridge the gap be-
tween these classes, and to do so we consider two languages each
representing a distinct class: XQuery and CDuce.

2. Comparisons between XQuery and CDuce
XQuery [7] is a declarative language standardized by the W3C that
heavily relies on XPath as a data extraction primitive. Interestingly,
the next version of XQuery (version 3.0, currently being drafted
[9]) adds several functional traits: type and value case analysis and
functions as first-class citizens. However, while the W3C specifies
a standard for document types (XML Schema), it says little about
the typing of XQuery programs (the XQuery 3.0 draft goes as
far as saying that static typing is “implementation defined” and
therefore optional). This is a step back from the XQuery 1.0 Formal
Semantics [8] which gives sound (but sometime imprecise) typing
rules for XQuery.

In contrast, CDuce [2] is a programming language used in pro-
duction but issued from academic research. It is a statically-typed
functional language with, in particular, higher-order functions and
powerful pattern matching tailored for XML data. A key character-
istic of CDuce is its type algebra, which is based on semantic sub-
typing [5] and features recursive types, type constructors (product,
record, and arrow types), and general Boolean connectives (union,
intersection, and negation of types) as well as singleton types. This
type algebra is particularly suited to express the types of XML doc-
uments and relies on the same foundation as the one that underpins
XML Schema: regular tree languages. Finally, the CDuce type sys-

XQuery code:

1 declare function get_links($page, $print)
2 {
3 for $i in $page/descendant::a[not(ancestor::b)]
4 return $print($i)
5 }
6

7 declare function pretty($link)
8 {
9 typeswitch($link)

10 case $l as element(a)
11 return switch ($l/@class)
12 case "style1"
13 return
14 {$l/text()}
15
16 default return $l
17 default return $link
18 }

CDuce code:

19 let get_links : <_>_ → (<a>_ → <a>_) → [<a>_ *] =
20 fun page -> fun print ->
21 match page with
22 <a>_ & x -> [(print x)]
23 | <_\b> l -> (transform l with i) -> get_links i print)
24 | _ -> []
25

26 let pretty : (<a>_ → <a>_) & (Any\<a>_ → Any\<a>_) =
27 fun link ->
28 match link with
29 l -> [l]
30 | x -> x

Figure 1. Document transformation, in XQuery 3.0 and CDuce

tem supports ad-hoc polymorphism (through overloading and sub-
typing) while parametric polymorphism is not provided yet.

Figure 1 highlights the key features as well as the shortcomings
of both languages by defining the same two functions “get_links”
and “pretty” in each language. The first function “get_links”
(i) takes an XHTML document “$page” and a function “$print” as
input, (ii) computes the sequence of all hypertext links (a-labelled
elements) of the document that do not occur below a bold element
(b-labelled elements), and (iii) applies the print argument to each
link in the sequence, returning the sequence of the results. The
second function “pretty” takes anything as argument and performs
a case analysis. If the argument is a link whose class attribute
has the value "style1", the output is a link with the same target
(href attribute) and whose text is embedded in a bold element.
Otherwise, the argument is unchanged.

We first look into the “get_links” function. In XQuery, collect-
ing all the “a” elements of interest is straightforward: this is done
through the XPath expression at Line 3:

$page/descendant::a[not(ancestor::b)]

In a nutshell, an XPath expression is a sequence of steps that
(i) select sets of nodes along the specified axis (here descendant
meaning the descendants of the root node of $page), (ii) keep only
those nodes in the axis that have a particular label (here “a”), and
(iii) further filter the results according to a Boolean condition (here
not(ancestor::b) meaning that from a candidate “a” node, the
step ancestor::b must return an empty result). At Lines 3–4,
the “for...return” expression binds in turn each element of
the result of the XPath expression to the variable $i, evaluates the
return expression, and concatenates the results. Note that there is
no type annotation and that this function would fail at runtime if
$page is not an XML element or if $print is not a function.

In clear contrast, in the CDuce program1, the interface of
“get_links” is fully specified (Line 19). Moreover, it is currified
and takes two arguments. The first argument is “page” of type
<_>_, which denotes any XML element (_ denotes a wildcard pat-
tern and is a synonym of the type 1, the type of all values, while
<s>t is the type of an XML element with tag of type s and con-
tent of type t). The second argument is print of type <a>_→ <a>_,
which denotes functions that take an “a” element (whose content
is anything) and return an “a” element. The final output is a value
of type [<a>_ *], which denotes a possibly empty sequence of
“a” elements. The implementation of get_links in CDuce is quite
different from its XQuery counterpart: following the functional id-
iom, it is defined as a recursive function that traverses its input
recursively and performs a case analysis through pattern matching.
If the input is an “a” element (Line 22), it binds the input to the
capture variable “x”, evaluates “print x”, and puts the result in
a sequence (denoted by square brackets). If the input is an XML
element whose label is not “b” (“\” stands for difference, so _\b
denotes or matches any value different from b), it captures the con-
tent of the element (a sequence) in “l” and applies itself recursively
to each element of “l” using the transform ... with construct
whose behavior is the same as XQuery’s “for”. Lastly, if the result
is not an element (or it is a “b” element), it stops the recursion and
returns the empty sequence.

For the pretty function, the XQuery version (Lines 7–18) first
performs a “type switch”, which tests whether the input “$link” has
the label “a”. If so, it extracts the value of the class attribute using
an XPath expression (Line 11) and performs a case analysis on that
value. In the case where the attribute is "style1", it re-creates an
“a” element (with a nested “b” element) extracting the relevant part
of the input using XPath expressions. The CDuce version (Lines
26–30) behaves in the same way but collapses all the cases in a
single pattern matching. If the input is an “a” element with the de-
sired class attribute, it binds the contents of the href attribute
and the element to the variables h and l, respectively, and builds the
desired output; otherwise, the input is returned unchanged. Interest-
ingly, this function is overloaded. Its signature is composed of two
arrow types: if the input is an “a” element, so is the output; if the
input is something else than an “a” element, so is the output (& in
types and patterns stands for intersection). Note that it is safe to use
the pretty function as the second argument of the get_links function
since (<a>_→<a>_) & (Any\<a>_→Any\<a>_) is a subtype of
<a>_→<a>_ (an intersection is always smaller than or equal to the
types that compose it).

1 We took some liberties with CDuce’s syntax in order to better match
XQuery’s one. The actual CDuce definitions are more compact.

Here we see that the strength of one language is the weakness of
the other: CDuce provides static typing, a fine-grained type algebra,
and a pattern matching construct that cleanly unifies type and value
case analysis. XQuery provides through XPath a declarative way to
navigate a document, which is more concise and less brittle than
using hand-written recursive functions (in particular, at Line 22 in
the CDuce code, there is an implicit assumption that a link cannot
occur below another link; the recursion stops at “a” elements).

3. Contributions
We improve both XQuery and CDuce by showing that (an extended)
CDuce can be seen as a succinct core λ-calculus that exactly cap-
tures XQuery 3.0 programs. To achieve this, we extend CDuce in
several ways.

First, we allow one to navigate in CDuce values, both downward
and upward. A natural way to do so in a functional setting is to use
zippers à la Huet [6] to annotate values. Zippers denote the posi-
tion in the surrounding tree of the value they annotate, as well as its
current path from the root. We extend CDuce not only with zipper
values (i.e., values annotated by zippers) but also with zipper types.
By doing so, we show that we can navigate not only in any direction
in a document but also in a precisely typed way, allowing one to ex-
press constraints on the path in which a value is within a document.

Second, we extend CDuce pattern matching with accumulating
variables that allow us to encode recursive XPath axes (such as
descendant and ancestor). It is well known that typing such
recursive axes goes well beyond regular tree languages and that
approximations in the type system are needed. Rather than giv-
ing ad-hoc built-in functions for descendant and ancestor, we
define the notion of type operators and parameterize the CDuce
type system (and dynamic semantics) with these operators. Sound-
ness properties can then be shown in a modular way without hard-
coding any specific typing rules in the language. With this addition,
XPath navigation can be encoded simply in CDuce’s pattern match-
ing constructs and it is just a matter of syntactic sugar definition to
endow CDuce with nice declarative navigational expressions such
as those successfully used in XQuery or XSLT.

Finally, on the XQuery side, we extend XQH, a core version
of XQuery 3.0 proposed by Benedikt and Vu [1], with type case,
value case and type annotations on functions. We give an encoding
of the extended XQH into CDuce. The encoding provides for free
an effective and efficient typechecking algorithm for XQuery 3.0
programs as well as a formal and compact specification of their
semantics. Even more interestingly, it provides a solid formal basis
to start further studies on the definition of XQuery 3.0 and of its
properties. At least, it is straightforward to use this basis to add
overloaded functions to XQuery. More crucially, we expect that the
recent advances on polymorphism for semantic subtyping [3, 4]
can be transposed to this basis to provide a polymorphic type
system and type inference algorithm both to XQuery 3.0 and to the
extended CDuce language defined here. Polymorphic types are the
missing ingredient to make higher-order functions yield their full
potential and to remove any residual justification of the absence of
standardization of XQuery 3.0 type system.

An expanded version of this paper, containing all the technical
details and comparisons with related work, can be found at the
following web page:

https://www.lri.fr/~im

References
[1] M. Benedikt and H. Vu. Higher-order functions and structured

datatypes. In WebDB, pages 43–48, 2012.
[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric

general-purpose language. In ICFP, pages 51–63, 2003.

https://www.lri.fr/~im

[3] G. Castagna, K. Nguyễn, Z. Xu, H. Im, S. Lenglet, and L. Padovani.
Polymorphic functions with set-theoretic types: part 1: syntax, seman-
tics, and evaluation. In POPL, pages 5–18, 2014.

[4] G. Castagna and Z. Xu. Set-theoretic foundation of parametric poly-
morphism and subtyping. In ICFP, pages 94–106, 2011.

[5] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing
set-theoretically with function, union, intersection, and negation types.
J. ACM, 55(4):1–64, 2008.

[6] G. Huet. The Zipper. J. Funct. Program., 7(5):549–554, 1997.
[7] W3C: XML Query. http://www.w3.org/TR/xquery, 2010.
[8] XQuery 1.0 and XPath 2.0 Formal Semantics (Second Edition). http:

//www.w3.org/TR/xquery-semantics/, 2010.
[9] W3C: XQuery 3.0. http://www.w3.org/TR/xquery-3.0, 2013.

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-3.0

	Motivations
	Comparisons between XQuery and CDuce
	Contributions

