
1

F# Data: Making structured data first class citizens

Tomas Petricek

University of Cambridge, United Kingdom

tomas.petricek@cl.cam.ac.uk

1. Introduction

Despite numerous schematization efforts, most data is still available in

structured formats – governments release data as CSV files, web

services communicate using JSON and most XML files used in

practice do not carry a schema. The only information that is usually

available to developers is a set of examples, such as typical server

responses in the documentation or data files from previous years.

Accessing such formats in statically typed languages is difficult.

Only a few languages provide a mechanism for importing schema from

external data sources as types. Even then, the absence of explicit

schema makes such process hard. As a result, many developers

working with data prefer dynamically typed languages that simplify

data access, but make code more error prone.

Is it possible to access such structured external data in a statically

typed way? In this paper, we present F# Data – an open source library

of F# type providers for accessing XML, CSV and JSON data based

on sample document(s) provided by the user. The library implements

type inference algorithm that finds common supertype of the provided

examples. Such inferred type becomes available through the type

provider mechanism and recovers certain program properties.

2. Structural type providers
In this section, we demonstrate structural type providers from the F#

Data (http://fsharp.github.io/FSharp.Data) which has become stan-

dard library for data acquisition in F#. We look at an example of

reading data in the JSON format. Type providers are introduced

along the way, so no previous knowledge of type providers is needed.

JSON is based on data structures used in JavaScript and uses six

types (Number, String, Boolean, Array, Object and Null). The

following snippet is a valid JSON document:

[{"name" : null, "age" : 23},

 {"name" : "Alexander", "age" : 1.5},

 {"name" : "Tomas"}]

In a statically typed functional language, JSON documents can be

represented using algebraic data type. When processing documents,

we use pattern matching to extract the values that we expect to be

available in the document. Assuming the above format, we could

print the names of all persons in the document as follows:

match data with

| Array items →

 for item in items do

 match item with

 | Object prop → print (Map.find prop "name")

 | _ → failwith "Incorrect format"

| _ → failwith "Incorrect format"

 The code expects that the input is in a certain format (array of objects

with the "name" field) and it fails if the input does not match these

requirements.

Although the above code requires a fixed structure (array of

records with a certain field), it is written using abstractions that have

been designed to allow handling non-fixed structures (such as pattern

matching). If the input does not match the expected structure, the

code simply throws an exception.

Assuming that people.json contains the above data and data

is a string containing information in the same format, we can rewrite

the code using JsonProvider from F# Data as follows (also printing

the age, if it is present):

type People = JsonProvider<"people.json">

let items = People.Parse(data)

for item in items do

 printf "%s" item.Name

 Option.iter (printf "%d") item.Age

This code achieves the simplicity of dynamically typed languages, but

in a typed way. The parameter "people.json" is special and is

resolved statically at compile-time (it has to be a constant). It is passed

to JsonProvider which contains code (executed at compile-time)

that builds a specification of the People type and passes it back to the

F# compiler. This type information is also available at development

time allowing advanced tooling such as code completion.

The type provider also specifies code that should be executed at

run-time in place of item.Name and other operations. To

accommodate external data sources with huge number of types (such

as Freebase and WorldBank in F# Data), type providers allow

building erased types – types that exist only at type-checking phase,

but disappear during the compilation e.g. item.Name is compiled to

item.GetStringProperty("name").

http://fsharp.github.io/FSharp.Data

2

3. Type system for structured data
The type inference algorithm for structured data is based on a

subtyping relation. When inferring the type of a specified document,

we infer (the most specific) types of individual values, such as CSV

rows or JSON nodes, and then find the common supertype of values

in a given dataset. Structural types 𝜏 are defined as follows:

𝜏 = ⊤ | null | int | decimal | float | string | bool

 [𝜏] | 𝜏1 + ⋯ + 𝜏𝑛
 𝜈𝑜𝑝𝑡 { 𝛿1𝜈1: 𝜏1, … , 𝛿𝑛𝜈𝑛: 𝜏𝑛 }

The type can be one of primitive types (numeric, string, Boolean), null

and top type (which are needed for the null value and when type is

not known – e.g. empty list).

The last three cases define a type of collections, type of (un-

labeled) unions and a record type consisting of optional name 𝜈 (used

by named XML elements, but ignored by JSON where records are

not labeled) together with a collection of fields. Each field has a name

𝜈𝑖 and a type 𝜏𝑖 and an annotation 𝛿𝑖 specifying whether the field is

optional or always present. This is directly supported in our algorithm

because structured documents often contain missing values.

Subtyping relation. We do not attempt to provide formal definition

here, but the key aspects of subtyping relation are:

 Numeric types correspond to F# types and we always infer the

most precise numeric type. At runtime, int can be converted to

decimal, which can be converted to float.

 The null value is valid for all union types, record types and

string types (following .NET type system), but not for

primitive numeric types.

 Record type is a subtype of another record type if it contains all

its fields together with additional optional fields. Common

supertype of two records is a record with the fields unique to one

or the other marked as optional.

 There is a top type, but no single bottom type. Given two types,

we can always find common supertype, because union type is

supertype of all its components.

Example. To demonstrate how the type inference works in practice,

let us revisit the example from Section 2. The sample document is a

list of records with the name field (which may be null) and optional

age field that is either int or decimal. The type provider maps the

inferred type to the following F# types:

type Entity1 = list<Entity2>

type Entity2 =

 abstract Name : string

 abstract Age : option<decimal>

Records are mapped to a type with named properties (whose

implementation attempts to get the field by name and converts the

value to the required type). Optional fields are mapped to option

types and can then be handled using pattern matching or using

function such as Option.iter used earlier.

Properties. The type generated based on a sample document can be

used to read other documents of similar structure. Accessing a field of

such document may fail when the document does not correspond to

the inferred structure (e.g. field is missing or contains value that is not

convertible to the desired type).

Consequently, our system does not have a traditional type sound-

ness property. A relativized form of type soundness holds – when the

input is subtype of all the provided sample(s), then the program will

not fail. In practice, this turns out to be sufficiently strong guarantee

for practical programming with XML, CSV and JSON formats.

Conclusions
In this paper, we gave a brief overview to the structural type

providers in the F# Data library that simplify working with CSV,

CML and JSON documents. Such documents often lack schema,

which makes it difficult to integrate them into statically typed lang-

uages. Our approach is to infer the schema from sample document(s).

This gives us a relativized type safety property, which recovers as much

typing as possible, given the dynamic nature of the problem.

Related work
The F# Data library combines two aspects that have been considered

separately in previous work. The first is integrating external data

sources into statically typed language. LINQ [4] uses code generation

and Links [1] achieves that by being tight to a specific data source

(database). We built on top of F# type providers which have been

described previously. The report [3] also provides more detailed

overview of related work in that area.

The second component is type inference for structured formats.

A related system has been presented in [2] which is designed to work

over large-scale sample data sets and uses more heuristics to produce

succinct type. In contrast, our approach is simpler, but works well for

smaller samples that are often available when calling REST-based

services or working with XML and CSV data.

1. Links: web programming without tiers. Ezra Cooper, Sam

Lindley, Philip Wadler, and Jeremy Yallop. In the proceedings of

FMCO 2006, LNCS 4709.

2. Typing Massive JSON Datasets. Dario Colazzo, Giorgio Ghelli,

Carlo Sartiani, In the proceedings of XLDI 2012

3. F#3.0 - Strongly-Typed Language Support for Internet-Scale

Information Sources. Don Syme et al., Technical Report, MSR-

TR-2012-101, Microsoft Research, 2012

4. LINQ: reconciling object, relations and XML in the .NET

framework. Erik Meijer, Brian Beckman and Gavin Bierman. In

the proceedings of SIGMOD 2006.

