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1. Introduction 

Despite numerous schematization efforts, most data is still available in 

structured formats – governments release data as CSV files, web 

services communicate using JSON and most XML files used in 

practice do not carry a schema. The only information that is usually 

available to developers is a set of examples, such as typical server 

responses in the documentation or data files from previous years. 

Accessing such formats in statically typed languages is difficult. 

Only a few languages provide a mechanism for importing schema from 

external data sources as types. Even then, the absence of explicit 

schema makes such process hard. As a result, many developers 

working with data prefer dynamically typed languages that simplify 

data access, but make code more error prone. 

Is it possible to access such structured external data in a statically 

typed way? In this paper, we present F# Data – an open source library 

of F# type providers for accessing XML, CSV and JSON data based 

on sample document(s) provided by the user. The library implements 

type inference algorithm that finds common supertype of the provided 

examples. Such inferred type becomes available through the type 

provider mechanism and recovers certain program properties. 

2. Structural type providers 
In this section, we demonstrate structural type providers from the F# 

Data (http://fsharp.github.io/FSharp.Data) which has become stan-

dard library for data acquisition in F#. We look at an example of 

reading data in the JSON format. Type providers are introduced 

along the way, so no previous knowledge of type providers is needed.  

JSON is based on data structures used in JavaScript and uses six 

types (Number, String, Boolean, Array, Object and Null). The 

following snippet is a valid JSON document:  

[ {"name" : null, "age" : 23},  

  {"name" : "Alexander", "age" : 1.5},  

  {"name" : "Tomas"} ] 

In a statically typed functional language, JSON documents can be 

represented using algebraic data type. When processing documents, 

we use pattern matching to extract the values that we expect to be 

available in the document. Assuming the above format, we could 

print the names of all persons in the document as follows:  

 

match data with  

| Array items →  

   for item in items do  

     match item with 

     | Object prop → print (Map.find prop "name")  

     | _ → failwith "Incorrect format" 

| _ → failwith "Incorrect format" 

 The code expects that the input is in a certain format (array of objects 

with the "name" field) and it fails if the input does not match these 

requirements.  

Although the above code requires a fixed structure (array of 

records with a certain field), it is written using abstractions that have 

been designed to allow handling non-fixed structures (such as pattern 

matching). If the input does not match the expected structure, the 

code simply throws an exception. 

Assuming that people.json contains the above data and data 

is a string containing information in the same format, we can rewrite 

the code using JsonProvider from F# Data as follows (also printing 

the age, if it is present): 

type People = JsonProvider<"people.json">  

let items = People.Parse(data)  

for item in items do  

  printf "%s" item.Name  

  Option.iter (printf "%d") item.Age 

This code achieves the simplicity of dynamically typed languages, but 

in a typed way. The parameter "people.json" is special and is 

resolved statically at compile-time (it has to be a constant). It is passed 

to JsonProvider which contains code (executed at compile-time) 

that builds a specification of the People type and passes it back to the 

F# compiler. This type information is also available at development 

time allowing advanced tooling such as code completion. 

The type provider also specifies code that should be executed at 

run-time in place of item.Name and other operations. To 

accommodate external data sources with huge number of types (such 

as Freebase and WorldBank in F# Data), type providers allow 

building erased types – types that exist only at type-checking phase, 

but disappear during the compilation e.g. item.Name is compiled to 

item.GetStringProperty("name"). 

http://fsharp.github.io/FSharp.Data
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3. Type system for structured data 
The type inference algorithm for structured data is based on a 

subtyping relation. When inferring the type of a specified document, 

we infer (the most specific) types of individual values, such as CSV 

rows or JSON nodes, and then find the common supertype of values 

in a given dataset. Structural types 𝜏 are defined as follows: 

𝜏 = ⊤ |  null | int | decimal | float | string | bool

  [𝜏] | 𝜏1 + ⋯ + 𝜏𝑛 
  𝜈𝑜𝑝𝑡 { 𝛿1𝜈1: 𝜏1, … , 𝛿𝑛𝜈𝑛: 𝜏𝑛 }

 

The type can be one of primitive types (numeric, string, Boolean), null 

and top type (which are needed for the null value and when type is 

not known – e.g. empty list). 

The last three cases define a type of collections, type of (un-

labeled) unions and a record type consisting of optional name 𝜈  (used 

by named XML elements, but ignored by JSON where records are 

not labeled) together with a collection of fields. Each field has a name 

𝜈𝑖 and a type 𝜏𝑖 and an annotation 𝛿𝑖 specifying whether the field is 

optional or always present. This is directly supported in our algorithm 

because structured documents often contain missing values. 

Subtyping relation. We do not attempt to provide formal definition 

here, but the key aspects of subtyping relation are: 

 Numeric types correspond to F# types and we always infer the 

most precise numeric type. At runtime, int can be converted to 

decimal, which can be converted to float. 

 The null value is valid for all union types, record types and 

string types (following .NET type system), but not for 

primitive numeric types. 

 Record type is a subtype of another record type if it contains all 

its fields together with additional optional fields. Common 

supertype of two records is a record with the fields unique to one 

or the other marked as optional. 

 There is a top type, but no single bottom type. Given two types, 

we can always find common supertype, because union type is 

supertype of all its components.   

Example. To demonstrate how the type inference works in practice, 

let us revisit the example from Section 2. The sample document is a 

list of records with the name field (which may be null) and optional 

age field that is either int or decimal. The type provider maps the 

inferred type to the following F# types: 

type Entity1 = list<Entity2> 

type Entity2 =  

  abstract Name : string 

  abstract Age  : option<decimal>  

Records are mapped to a type with named properties (whose 

implementation attempts to get the field by name and converts the 

value to the required type). Optional fields are mapped to option 

types and can then be handled using pattern matching or using 

function such as Option.iter used earlier.  

Properties. The type generated based on a sample document can be 

used to read other documents of similar structure. Accessing a field of 

such document may fail when the document does not correspond to 

the inferred structure (e.g. field is missing or contains value that is not 

convertible to the desired type). 

Consequently, our system does not have a traditional type sound-

ness property. A relativized form of type soundness holds – when the 

input is subtype of all the provided sample(s), then the program will 

not fail. In practice, this turns out to be sufficiently strong guarantee 

for practical programming with XML, CSV and JSON formats. 

Conclusions 
In this paper, we gave a brief overview to the structural type 

providers in the F# Data library that simplify working with CSV, 

CML and JSON documents. Such documents often lack schema, 

which makes it difficult to integrate them into statically typed lang-

uages. Our approach is to infer the schema from sample document(s). 

This gives us a relativized type safety property, which recovers as much 

typing as possible, given the dynamic nature of the problem. 

Related work 
The F# Data library combines two aspects that have been considered 

separately in previous work. The first is integrating external data 

sources into statically typed language. LINQ [4] uses code generation 

and Links [1] achieves that by being tight to a specific data source 

(database). We built on top of F# type providers which have been 

described previously. The report [3] also provides more detailed 

overview of related work in that area. 

The second component is type inference for structured formats. 

A related system has been presented in [2] which is designed to work 

over large-scale sample data sets and uses more heuristics to produce 

succinct type. In contrast, our approach is simpler, but works well for 

smaller samples that are often available when calling REST-based 

services or working with XML and CSV data. 
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