
Abstraction Without Regret for Efficient Data Processing

Tiark Rompf ‡∗ Nada Amin∗ Thierry Coppey† Mohammad Dashti† Manohar Jonnalagedda∗
Yannis Klonatos† Martin Odersky∗ Christoph Koch†

‡Oracle Labs: {first.last}@oracle.com ∗Programming Methods Lab / † DATA Lab, EPFL: {first.last}@epfl.ch

Growing data sets require efficiency on all levels of the processing
stack. This leads to a trade-off between generality and specialization: On
the one hand, we want reusable, generic solutions that can support many
different kinds of data and many different processing tasks. But on the
other hand, programs need to be specialized to data schemata and execution
environments to obtain good performance. To give a real-world example,
popular open-source and commercial database systems have been shown
[10, 12] to perform 10 or 100x worse on certain queries than specialized,
hand-written C implementations of the same query. At the same time such
systems contain hundreds of thousands of lines of optimized C code, which
suggests that manual optimization may not be cost effective. The database
community has realized this problem, with prominent researchers arguing
to replace generic database systems with specialized solutions [9].

In this talk, we make the case for a) more collaboration between DB
and PL researchers, and b) for using cutting-edge PL technology such as
generative metaprogramming (staging [11]) to turn interpreters, which are
ubiquitous in data processing pipelines, into compilers. We present a range
of examples from previous and ongoing work in the context of Scala and
LMS (Lightweight Modular Staging) [8], including recent collaborative
efforts on developing database systems using these techniques. As a take-
away for programming language designers, we further argue that for truly
expressive multi-stage programming, quotation mechanisms should offer
more semantics-preservation guarantees, in particular about maintaining
statement execution order across stage boundaries.

Motivating Example Let us consider a small programming example
in Scala. We would like to implement a generic library function to read
CSV files. A CSV file contains tabular data, where the first line defines the
schema, i.e. the names of the columns. We would like to iterate over all the
rows in a file and access the data fields by name:
processCSV("data.txt") { record => // sample data:
if (record("Flag") == "yes") // Name, Value, Flag
println(record("Name")) // A, 7, no

} // B, 2, yes

Records are objects of the following class, which carries both the field
data and the schema, and enables lookup by key:
class Record(fields: Array[String], schema: Array[String]) {
def apply(key: String) = fields(schema indexOf key)

}

This record abstraction enables a nice high-level programming style but
unfortunately it comes at a high price. The code above runs much slower
than just writing a specialized while loop:
while (lines.hasNext) {
val fields = lines.next().split(",")
if (fields(2)) == yes) println(fields(0))

}

Being generic means that a system contains interpretive structure. In
this example, we are interpreting the schema that is read from the file. In a
DBMS, queries are optimized at the SQL level and then translated to low-
level execution plans, which are interpreted, operator by operator.

Interpreter + Staging = Compiler Let us turn our CSV reader into a
query engine that can run simple SQL queries. Our example above would
be expressed as
SELECT Name FROM data.txt WHERE Flag == ’yes’

and we assume that we already receive a parsed (and possibly optimized)
structured representation, the execution plan. In this case:
Print(
Project(List("Name"))(
Filter(Eq(Field("Flag"),Const("yes")))(
Scan("data.txt"))))

The operators are arranged in a tree, and with the exception of Scan, each
of them has a parent from which it obtains a stream of records. We can
implement a query interpreter as follows:
def eval(p: Predicate)(rec: Record): Boolean = ... // elided
def exec(o: Operator)(yld: Record => Unit) = o match {
case Scan(file) =>
processCSV(file)(yld)

case Filter(pred)(parent) =>
exec(parent) { rec => if (eval(pred)(rec)) yld(rec) }

case Project(fields)(parent) =>
exec(parent) { rec => yld(fields map (k => rec(k))) }

case Print(parent) =>
exec(parent) { rec => println(rec.fields mkString ",") }

}

It is easy to see that this layer of interpretation can be a bottleneck, not
only in our little example but also in real-world data processing systems.
In fact, everybody knows that interpreted code is slower than compiled
code. So why aren’t we using compilers everywhere? Because they are
way too hard to implement! In fact this is a well-known part of database
folklore: The first relational DBMS, IBM’s System R, initially compiled its
query plans, but before the first commercial release, this was changed to
interpretation. The reason for this was that code generation for the large set
of query techniques being investigated was incredibly painful. Nowadays,
among mainstream DBMS, only data stream processing systems such as
IBM Spade or StreamBase use compilation. The reason here is that ultra-
low latencies are necessary and justify the inconvenience of creating a
compiler. Also, limited functionality and expressive power are deemed
acceptable in data stream processors, but not in general purpose DBMS.

The good news is that staging offers a generic recipe to turn interpreters
into compilers: staging an interpreter enables us to specialize it with re-
spect to any program. The result of specialization is that the interpreter is
dissolved and only the computation of the interpreted program remains as
residual generated code [1, 4].

Mixed-Stage Data Structures and Functions Lightweight Mod-
ular Staging (LMS) [8] is a staging technique driven by types. The type
Rep[T] represents a delayed computation of type T. Thus, during staging,
a bare “static” type T means “executes now”, while a wrapped “dynamic”
type Rep[T] means “generate code to execute later”. We tweak the Record
class so that only the fields are “dynamic”:
class Record(fields: Rep[Array[String]], schema:Array[String]) {
def apply(key:String) = fields(schema indexOf key)

}

Now record objects exist purely at staging time, and never become part
of the generated code. For our example, the generated code will be exactly
the efficient while loop shown above, even if we are starting from a SQL
query as our input.

Let us look at the definition of procedure processCSV, which forms the
core of our data processing engine:
def processCSV(file: String)(yld: Record => Rep[Unit]) = {
val lines = FileReader(file); val schema = lines.next.split(",")
run { while (lines.hasNext) {

val fields = lines.next().split(",")
yld(new Record(fields,schema))

}}}

The type of the closure argument yld is Record => Rep[Unit], a present-
stage function. Invoking it will inline the computation, a key difference to a
a staged function of type Rep[A=>B], which would results in a function call
in the generated code. The while loop is virtualized [7], i.e. overloaded
to yield a staged expression when the condition or loop body is a Rep
expression. Using types to drive staging decisions enables us to mix present-
stage and future-stage code quite freely, without syntactic noise introduced
by quotation brackets.

Preserving Semantics What level of language support is required for
expressive multi-stage programming? A growing number of languages sup-
port some form of code quotation, but unfortunately there are some short-
comings to purely syntactic approaches. Apart from syntactic questions, let
us consider our Record abstraction with fields of type Rep[T], this time using
explicit quotation syntax:
val fields = <| lines.next().split(",") |>
yld(new Record(fields,schema))

If Rep[T] merely represents a quoted code fragment, every access to a
record field may duplicate the computation! This is not only costly, but also
not semantics-preserving with respect to termination and side effects. In this
example:
processCSV("data.txt") { rec =>
<| print(${ rec("Name") }) + rec(${ "Flag") }) |>

}

The code fragment containing lines.next() would be executed twice for
each record – clearly not the intended behavior.

The problem is that quotation is usually a purely syntactic mechanism.
To achieve semantic guarantees for realistic, call-by-value, computations
we propose to make quotation context-sensitive. We introduce reflect/reify
operators, and give the following reduction semantics for quotations:
(1) <| foo ${ bar } baz |>

---> reflect(" foo {" + reify { bar } + "} baz ")
(2) reify { E[reflect("str")] }

---> "val fresh = str; " + reify { E[Code("fresh")] }
(3) reify { Code("str") }

---> "str"

Here, E[.] denotes a reify-free execution context and fresh a fresh identi-
fier. As we can see, each quotation is immediately bound to a fresh identifier
in the generated code, and only identifiers are passed around as Rep values.
Thus, the evaluation order in the generated code mirrors the evaluation or-
der of the quotations.

This development is a natural extension of previous work on quotations:
Lisp introduced unhygienic quote/unquote/eval operators; MetaML [11]
provided guarantees about the binding structure; LMS additionally main-
tains evaluation order.

Case Studies
DBToaster DBToaster incrementalizes query evaluators and generates
low-level C++ or Scala code. In a first compilation stage, DBToaster takes
an SQL query and turns it into update event triggers. These triggers pre-
scribe how to efficiently refresh a materialized view of the query as the base
data in the database changes. Compared to classical incremental view main-
tenance (IVM) as implemented in most commercial DBMS, DBToaster’s
incrementalization technique is far more aggressive. Its output consists of
more fine-grained operations than those found in classical query (or view
refresh) plans; DBToaster triggers naturally lend themselves to compila-
tion. In DBToaster’s second stage, the event triggers are fed to a compiler
that lowers and optimizes them and generates efficient code. Experimental
results show that DBToaster improves the performance of IVM by several
orders of magnitude compared to the state of the art [2]. The second-stage
compiler was originally written in about 15k lines of OCAML code; re-
cently, we rewrote it in 2k lines of Scala/LMS code. Within this much re-
duced codebase, we were able to perform more aggressive inlining than in
the original compiler as well as data structure specialization, which is rel-
atively easy to achieve in LMS but was beyond the scope of our original
efforts. As a consequence, the running times of queries compiled using the
LMS-based DBToaster improve by one to two further orders of magnitude
compared to the results reported in [2], on the same benchmark.

LegoBase This joint project of Oracle Labs and EPFL attempts to prove
three theses:
(1) It is possible to write the query processor of a mainstream relational
DBMS in a high-level language such as Scala without regret; by optimizing
compilation using LMS, we can achieve code competitive in performance
with the expert-written specialized C code currently used in such query en-
gines. Due to the high breadth and variability of this optimization domain,
we have to expect that a compiler will permanently be at a disadvantage
compared to a creative human; however, this is offset by the compiler’s
much greater capacity to specialize code in many ways. For example, on
last count in a recent version of the PostgreSQL server, there were about
20 distinct implementations of the memory page abstraction and 7 imple-
mentations of B-trees. This form of human inlining and code specialization
of course creates a code maintenance nightmare but is probably justified by
improved performance. One can expect that performance can benefit from

further specialization and inlining that would be just too painful for a human
to carry out and take responsibility for in a software development project.
(2) We can leave it to the programmer to choose one from a number of
popular architectures for building such engines (say, whether to employ a
Volcano style iterator model [5] or a push model for sending partial query
results through the system), and have the compiler eliminate any artifacts of
such a choice, always creating the same, highly optimized code.
(3) Cross-operator optimization yields practical performance benefits. State
of the art query processors have an “expressiveness bottleneck” in the
query plan IR, which is the interface between query optimization and query
execution. Query execution is either based on interpretation or template-
expansion based optimization, neither of which can benefit from optimiza-
tion across relational algebra operator boundaries. By lowering these oper-
ators of the LMS IR, further cross-operator optimization is possible, and, in
fact, even performed automatically by LMS.

This project is work in progress. We have built a prototype query engine
based on LMS that can process query plans exported from the optimizer
of a commercial relational DBMS, and have evaluated it on the standard
TPC-H benchmark. This has provided strong support for theses 1 and 3. We
are currently working on extending our compiler by the code transforms to
realize thesis 2.

Delite and Spiral Delite [3] is compiler and runtime framework for
embedded DSLs, which compete with specialized, external DSLs and
manually optimized code. Spiral-S [6] is a program generator for high-
performance linear transforms. Both systems are built with LMS and use
staged interpreters internally as translators from high-level to low-level
representations in a multi-stage compiler pipeline.

Regular expressions and Parser Combinators We compile regular
expressions matchers and more general combinator parsers for communica-
tion protocols and data formats into low-level code. For regular expressions,
we show that NFA to DFA conversion can be expressed as a staged inter-
preter. We achieve speedups of 2x over optimized automata libraries, 100x
over the JDK implementation, and more than 2000x over unstaged Scala
code.

We evaluate staged parser combinators by comparing to hand-written
parsers for HTTP and JSON data from the NGINX and JQ projects. Our
generated Scala code, running on the JVM, achieves HTTP throughput of
75% of NGINX’s low-level C code, and 120% of JQ’s JSON parser. Other
Scala based tools such as Spray are at least an order of magnitude slower.

Relite and Lancet Staged interpreters can also be used to build just-in-
time compilers. Relite and Lancet are recent projects in the context of the R
language and Java bytecode 1

References
[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspon-

dence between evaluators and abstract machines. In Proceedings of the 5th ACM
SIGPLAN International Conference on Principles and Practice of Declaritive
Programming, PPDP ’03, pages 8–19, New York, NY, USA, 2003. ACM.

[2] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order delta
processing for dynamic, frequently fresh views. PVLDB, 5(10):968–979, 2012.

[3] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific lan-
guages. PACT, 2011.

[4] Y. Futamura. Partial evaluation of computation process, revisited. Higher-Order
and Symbolic Computation, 12(4):377–380, 1999.

[5] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility
and efficient search. In Proceedings of the Ninth International Conference on
Data Engineering, April 19-23, 1993, Vienna, Austria, pages 209–218. IEEE
Computer Society, 1993.

[6] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and M. Püschel. Spiral
in scala: towards the systematic construction of generators for performance
libraries. In GPCE, pages 125–134, 2013.

[7] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky. Scala-virtualized:
linguistic reuse for deep embeddings. Higher-Order and Symbolic Computation,
pages 1–43, 2013.

[8] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach
to runtime code generation and compiled dsls. Commun. ACM, 55(6):121–130,
2012.

[9] M. Stonebraker and U. Çetintemel. "one size fits all": An idea whose time has
come and gone (abstract). In ICDE, pages 2–11, 2005.

[10] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The end of an architectural era (it’s time for a complete rewrite).
In VLDB, pages 1150–1160, 2007.

[11] W. Taha and T. Sheard. Metaml and multi-stage programming with explicit
annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[12] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. Monetdb/x100 - a dbms in
the cpu cache. IEEE Data Eng. Bull., 28(2):17–22, 2005.

1 github.com/tiarkrompf/relite,github.com/tiarkrompf/lancet

