
A Functorial Query Language

David I. Spivak
Massachusetts Institute of Technology

dspivak@math.mit.edu

Ryan Wisnesky
Harvard University
ryan@cs.harvard.edu

January 2, 2014

In this talk we present FQL, a Functorial Query
Language. FQL is the natural query language of the func-
torial data model (FDM) [8], which is a proposed alter-
native to the relational data model based on category-
theoretic foundations. The mathematics of the FDM are
developed in [8], but few specific connections are made to
computer science. In this talk we describe recent work [9]
to connect the FDM to the relational model, culminating
in a definition of the FQL language, a compiler for FQL
that targets SQL, and a visual IDE. The project webpage
at wisnesky.net/fql.html contains the IDE and other papers
and slides about the project.

In the FDM, a schema is a category and a schema
mapping is a functor; schemas and mappings form a cat-
egory, Cat. A database instance on a schema C is a
functor C to Set, the category of sets, and a database
homomorphism between two C-instances I and J is a
natural transformations I ⇒ J . The instances and ho-
momorphisms on a schema C constitute a category, de-
noted C–Inst. A mapping M between schemas S and T ,
which can be generated from a visual correspondence be-
tween graphs, induces three adjoint data migration func-
tors, ΣM : S–Inst → T–Inst, ΠM : S–Inst → T–Inst,
and ∆M : T–Inst→ S–Inst. In recent work [9], we added
“attributes” to FDM schemas and instances and proved
that migrations of the form ΣF ◦ ΠG ◦ ∆H , where F is a
discrete op-fibration, are closed under composition. More-
over, we proved that such migrations can be implemented
using the SPCU (select, project, product, union) relational
algebra extended with a unique ID generating operation,
and proved that SPCU can be implemented as such mi-
grations. The following is an example FQL schema:

Emp
•

worksIn //

manager
��

Dept
•

secretary
oo

first◦ last◦ name◦

Emp.manager.worksIn = Emp.worksIn

Dept.secretary.worksIn = Dept

The two black nodes, three directed edges, and two
equational constraints determine a category: the category
freely generated by the graph, modulo the equations. An
instance on this schema consists of, for each black node
(“entity set”), a set of meaningless IDs; for each directed
edge, a function from IDs to IDs, and for each white node
(“attribute”), a function from IDs to the domain (e.g.,
strings). An instance can be represented as tables:

Emp
Emp mgr works first last
101 103 q10 Al Akin
102 102 x02 Bob Bo
103 103 q10 Carl Cork

Dept
Dept sec name
q10 102 CS
x02 101 Math

A schema mapping F : C → D is a functor from C to
D: a constraint-respecting function nodes(C)→ nodes(D)
and edges(C) → paths(D). We define ∆F : D–Inst →
C–Inst as composition:

∆F (I) := I ◦ F : C → Set C F //

∆F I

66D I // Set

Then, ΣF : C–Inst→ D–Inst is defined as the left adjoint
to ∆F , and ΠF : C–Inst→ D–Inst is defined as the right
adjoint to ∆F . Intuitively, ∆F can be thought of as pro-
jecting along F , ΣF as taking unions along F , and ΠF as
taking joins along F . The semantics of Σ is similar to that
of the Clio data migration system [5], and ∆ is the crucial
reverse data migration operation identified by Bernstein
and Alagic in their categorical model theory [1]. An ex-
ample FQL data exchange setting using entity-relationship
(ER) notation is shown in Figure 1.

Schemas, mappings, instances, and homomorphisms
are the constants of FQL. To combine them, FQL uses the
internal language of Cat as a bi-cartesian closed category
(BCCC) as its programming language for schemas and
schema mappings (see Figure 2). This language can equiv-
alently be thought of as the simply-typed λ-calculus with
strong 0, 1,×,+,→ types and finitely presented categories
and functors as constants. For each schema T , the category
T–Inst is a topos – a BCCC with a sub object classifier [2].
Hence FQL T -instances and T -homomorphisms are pro-
grammed using the internal language of a topos, which can
equivalently be thought of as intuitionistic higher-order
logic, extended with data migration operations ∆,Σ,Π.

1

Figure 1: Example Data Exchange Setting

Figure 2: Syntax of FQL Schemas T and Schema Mappings F

T ::= 0 | 1 | T + T | T × T | TT | T (= finitely presented categories)

F ::= idT | F ◦ F | proj1
T,T | proj2

T,T | inj1
T,T | inj2

T,T | ttT | ff T |
F ⊗ F | F ⊕ F | evT,T | ΛF | FT,T (= finitely presented functors)

Related Work
Although category presentations are a common notation
for schemas [3], most work treats such schemas as abbre-
viations for relational schemas. For example, in Clio [5],
users draw lines connecting related elements between two
schemas-as-graphs. The user’s input correspondence is
translated into the relational language of tuple generat-
ing dependencies, from which a query that implements the
user’s intended data transformation is generated. We be-
lieve that it is advantageous to treat such schemas directly
as categories, and indeed Clio cannot perform the Σ data
migration in Figure 1 because it cannot make sense of the
path equality constraint.

In many ways, our work is an extension and improve-
ment of Rosebrugh et al’s initial work on understanding
caterories as database schemas [4]. In that work, the au-
thors identify the Σ and Π data migration functors, but
they do not identify ∆ as their adjoint. Moreover, they
were unable to implement Σ and Π using relational algebra,
and they do not formalize a query language or investigate
the composition behavior of Σ and Π. Our development
diverges from their subsequent work on “sketches” [7].

Category-theoretic techniques were instrumental in the
development of nested relational data model [10]. How-
ever, the FDM and the nested relational model do not
appear to be connected. The FDM is more closely related
to work on categorical logic and type theory, where opera-
tions similar to Σ,Π, and ∆ often appear under the slogan
that “quantification is adjoint to substitution” [6].

References
[1] Suad Alagic and Philip A. Bernstein. A model theory for

generic schema management. In DBPL, 2001.

[2] Michael Barr and Charles Wells, editors. Category theory
for computing science, 2nd ed. 1995.

[3] P. Buneman, S. Davidson, and A. Kosky. Theoretical as-
pects of schema merging. In EDBT, 1992.

[4] Michael Fleming, Ryan Gunther, and Robert Rosebrugh.
A database of categories. J. SYMBOLIC COMPUT,
35:127–135, 2002.

[5] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lu-
cian Popa, and Mary Roth. Clio grows up: from research
prototype to industrial tool. In SIGMOD ’05:.

[6] Bart Jacobs. Categorical logic and type theory. PhD thesis,
Mathematics, Amsterdam, Lausanne, New York, 1999.

[7] Michael Johnson and Robert Rosebrugh. Sketch data
models, relational schema and data specifications. Elec-
tronic Notes in Theoretical Computer Science, 61(0):51 –
63, 2002.

[8] David I. Spivak. Functorial data migration. Inf. Comput.,
217:31–51, August 2012.

[9] David I Spivak and Ryan. Wisnesky. Rela-
tional foundations for functorial data migration.
http://arxiv.org/abs/1212.5303, 2013.

[10] Limsoon Wong. Querying nested collections. PhD thesis,
Philadelphia, PA, USA, 1994. AAI9503855.

2

