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In this talk we present FQL, a Functorial Query
Language. FQL is the natural query language of the func-
torial data model (FDM) [8], which is a proposed alter-
native to the relational data model based on category-
theoretic foundations. The mathematics of the FDM are
developed in [8], but few specific connections are made to
computer science. In this talk we describe recent work [9]
to connect the FDM to the relational model, culminating
in a definition of the FQL language, a compiler for FQL
that targets SQL, and a visual IDE. The project webpage
at wisnesky.net/fql.html contains the IDE and other papers
and slides about the project.

In the FDM, a schema is a category and a schema
mapping is a functor; schemas and mappings form a cat-
egory, Cat. A database instance on a schema C is a
functor C to Set, the category of sets, and a database
homomorphism between two C-instances I and J is a
natural transformations I = J. The instances and ho-
momorphisms on a schema C constitute a category, de-
noted C—Inst. A mapping M between schemas S and T,
which can be generated from a visual correspondence be-
tween graphs, induces three adjoint data migration func-
tors, Xpr: S-Inst — T-Inst, IIy,: S-Inst — T-Inst,
and Ay : T-Inst — S-Inst. In recent work [9], we added
“attributes” to FDM schemas and instances and proved
that migrations of the form Y g o Il o Ay, where F' is a
discrete op-fibration, are closed under composition. More-
over, we proved that such migrations can be implemented
using the SPCU (select, project, product, union) relational
algebra extended with a unique ID generating operation,
and proved that SPCU can be implemented as such mi-
grations. The following is an example FQL schema:
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The two black nodes, three directed edges, and two
equational constraints determine a category: the category
freely generated by the graph, modulo the equations. An
instance on this schema consists of, for each black node
(“entity set”), a set of meaningless IDs; for each directed
edge, a function from IDs to IDs, and for each white node
(“attribute”), a function from IDs to the domain (e.g.,
strings). An instance can be represented as tables:
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A schema mapping F' : C — D is a functor from C to
D: a constraint-respecting function nodes(C) — nodes(D)
and edges(C) — paths(D). We define Ap: D-Inst —
C—Inst as composition:
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Then, ¥ p: C-Inst — D-Inst is defined as the left adjoint
to Ap, and g : C-Inst — D—Inst is defined as the right
adjoint to Ag. Intuitively, Ar can be thought of as pro-
jecting along F', X as taking unions along F', and IIg as
taking joins along F'. The semantics of 3 is similar to that
of the Clio data migration system [5], and A is the crucial
reverse data migration operation identified by Bernstein
and Alagic in their categorical model theory [1]. An ex-
ample FQL data exchange setting using entity-relationship
(ER) notation is shown in Figure 1.

Schemas, mappings, instances, and homomorphisms
are the constants of FQL. To combine them, FQL uses the
internal language of Cat as a bi-cartesian closed category
(BCCC) as its programming language for schemas and
schema mappings (see Figure 2). This language can equiv-
alently be thought of as the simply-typed A-calculus with
strong 0,1, X, 4+, — types and finitely presented categories
and functors as constants. For each schema T, the category
T-Inst is a topos —a BCCC with a sub object classifier [2].
Hence FQL T-instances and 7T-homomorphisms are pro-
grammed using the internal language of a topos, which can
equivalently be thought of as intuitionistic higher-order
logic, extended with data migration operations A, 3, IT.



Figure 1: Example Data Exchange Setting
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Figure 2: Syntax of FQL Schemas 7" and Schema Mappings F'
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Related Work

Although category presentations are a common notation
for schemas [3], most work treats such schemas as abbre-
viations for relational schemas. For example, in Clio [5],
users draw lines connecting related elements between two
schemas-as-graphs. The user’s input correspondence is
translated into the relational language of tuple generat-
ing dependencies, from which a query that implements the
user’s intended data transformation is generated. We be-
lieve that it is advantageous to treat such schemas directly
as categories, and indeed Clio cannot perform the ¥ data
migration in Figure 1 because it cannot make sense of the
path equality constraint.

In many ways, our work is an extension and improve-
ment of Rosebrugh et al’s initial work on understanding
caterories as database schemas [4]. In that work, the au-
thors identify the ¥ and II data migration functors, but
they do not identify A as their adjoint. Moreover, they
were unable to implement 3 and IT using relational algebra,
and they do not formalize a query language or investigate
the composition behavior of ¥ and II. Our development
diverges from their subsequent work on “sketches” [7].

Category-theoretic techniques were instrumental in the
development of nested relational data model [10]. How-
ever, the FDM and the nested relational model do not
appear to be connected. The FDM is more closely related
to work on categorical logic and type theory, where opera-
tions similar to X, II, and A often appear under the slogan
that “quantification is adjoint to substitution” [6].
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