LITEQ: Language Integrated Types,
Extensions and Queries for RDF Graphs

Stefan Scheglmann

Martin Leinbereger

Steffen Staab

University of Koblenz-Landau
{schegi, staab, }@uni-koblenz.de

1. Introduction

RDF data representations are flexible and extensible. Even the
schema of a data source can be changed at any time by adding,
modifying or removing classes and relationships between classes
at any time. While this flexibility facilitates the design and publi-
cation of linked data on the Web, it is rather difficult to access and
integrate RDF data in programming languages and environments
because current programming paradigms expect programmers to
know at least structure and content of the data source.

Therefore, a programmer who targets the access of linked data
from a host programming language must overcome several chal-
lenges. (i) Accessing an external data source requires knowledge
about the structure of the data source and its vocabulary. As linked
data sources may be extremely large and the data tend to change
frequently, it is almost impossible for programmers to know the
structures at the time before they develop their programs. There-
fore, approaches to simplify access to RDF sources should in-
clude a mechanism for exploring and understanding the RDF data
source. (ii) There is an impedance mismatch between the way
classes (types) are used in programming languages compared to
how classes structure linked data. (iii) A query and integration lan-
guage must be readable and easily usable for an incremental explo-
ration of data sources. (iv) When code in a host language describes
how RDF data is to be processed by the resulting program, the RDF
data should be typed and type safety should be ensured in order to
avoid run time errors and exceptions.

To address these challenges, we present LITEQ, a paradigm for
querying RDF data, mapping it for use in a host language, and
strongly typing it for taking full advantage of advanced compiler
technology. In particular, LITEQ comprises: (1) The node path
query language (NPQL), which has an intuitive syntax with opera-
tors for the navigation and exploration of RDF graphs. In particular,
NPQL offers a variable free notation, which allows for incremen-
tal writing of queries and incremental exploration of the RDF data
source by the programmer. (2) An extensional semantics for NPQL,
which clearly defines the retrieval of RDF resources and allows for
their usage at development time and run time. (3) In intensional
semantics for NPQL, which clearly defines the retrieval of RDF
schema information and allows for its usage in the programming
environment and host programming language at development time,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DDFP’14, January 25, 2015, San Diego, CA, United States.

Copyright © 2014 ACM 978-1-4503-1871-6/13/01... $15.00

compile time and run time. Our integration of NPQL into the host
language allows for static typing — using already available schema
information from the RDF data source — making it unnecessary for
the programmer to manually re-create type structures in the host
language.

2. Langauge Integrated Types, Extensions and
Queries for RDF Graphs

To illustrate the challenges and the contributions of LITEQ, we
consider the following scenario. Bill has to create an application
for a municipal administration that allows to manage dogs that live
in this city. This application should offer the user two different
main functionalities, (i) managing all registered dogs in the com-
munity. This includes browsing, adding removing and editing all
dogs from within the application. (ii)A tax reminder function, that
addresses all dog owners and reminds them to pay their tax. All
data about owners, dogs, etc. are published as RDF data assuming
the schema in (Example 1). It defines three classes: Dog (line 2)
and Person (lines 3) are subclasses of ex:Creature (line 1) (line
12) and two properties / predicates: ex :has : Owner (lines 4-6) and
ex:hasName (lines 7-9)

Listing 1. The RDF Schema
1 |ex:Creature rdfs:subclass0f rdf:Resource.
2 |ex:Dog rdfs:subclass0f ex:Creature.
3 |ex:Person rdfs:subclass0f ex:Creature.
4 |ex:owns rdf:type rdfs:Property;
5 rdfs:domain ex:Person;

6 rdfs:range ex:Dog.

7 |ex:hasName rdf:type rdfs:Property;
8 rdfs:domain ex:Creature;

9 rdfs:range rdfs:Literal.

In order to realize the functionalities mentioned above, Bill need
three specific types. For functionality (1), Bill needs types to rep-
resent “dog” entities and for the tax reminder functionality (2), he
needs a “person” representation. To be able to create these types, he
has to perform several tasks: (T1) Data exploration: At the begin-
ning, the structure and the content of the data source are completely
unknown to him. Bill needs to use some tools or query languages
in order to explore the data source and find out which content is
important for the functionalities in his application. (T2) Type ex-
ploration: Once Bill has decided to create a type to represent a
certain subset of the data source, he has to decide for a signature
for that type. (T3) Type creation: Once Bill, has decided for sev-
eral types, he has to implement them.

The objective of LITEQ is to support Bill in all aspects of the
integration of the unknown RDF data source into his application.
LITEQ is currently realized using the F# Type Providers. It al-
lows to embed NPQL expressions into the F# host language for

source exploration, type and entity definition. The current imple-
mentation of LITEQ includes operators for (i) refining a class to
a subclass (subType), (ii) refining a class to a subclass that also
has a certain property (propertySel), (iii) navigating from a class
to one of its instances (Extension) and (iv) navigating from a
class via a property to another class (propertyNav). Starting at
the canonical root of the RDF graph, i.e. rdf :Resource Bill can
navigate the RDF graph using these operators. Depending on the
used operator and the current expression, (here: rdf :Resource)
different views are shown: (i) Using (subType) navigation presents
Bill a class view showing him all immediate subclasses. (ii) The
(propertyNav) and (propertySel) presents a property view
showing him all the properties that have the current expression
(here: rdf:Resource) as their domain.(iii) (Extension) shows him
an instance view showing him all instances of the currently selected
class (rdf :Resource). Using these three views for NPQL-based
autocompletion, Bill may incrementally and interactively explore
the data source by writing node paths. He can easily navigate down
to dog or person, to define these types (the intension of the node
path) for his application. Or work on the set of all individuals (the
extension of the node path), e.g all persons who owns dogs for the
tax reminder.

The full definition of NPQL syntax and NPQL semantics is
skipped here for brevity, please refer to our technical report!.

3. Related Work

There is related research on mappings between Web data sources
and (typed) programming languages. LITEQ benefits from type
providers in F# that support the integration of information sources
into F# [10] such that external data sources are directly available
in programs. Type provider use F# LINQ queries [4] to retrieve
schema information from (Web) data sources in order to build the
corresponding types at run-time. Several Type Provider demon-
strate the integration of large data sources on the Web, like the
Freebase Type Provider that allows for the navigation within the
graph-structure of Freebase >.

The problem of accessing and integrating linked data in pro-
gramming environments has already been recognized as a chal-
lenge in various work. Frameworks like OntoMDE [9] or Agogo [7]
focus on ontology driven code generation. An overview can be
found at Tripresso’, a project web site on mapping RDF to the
object-oriented world. All of frameworks, metioned there have in
common that they translate the concepts of the ontology into an
object-oriented representation. However, compared to LITEQ, they
do not consider the exploration of data sources.

There exists basic mapping principles of RDF triples to objects
in object-oriented programming languages [?] and programming
language extensions to integrate RDF or OWL constructs [6]. In
contrast to LITEQ, there is no means for querying and navigating
unknown data sources, instead, the developer must be aware of the
structure of the ontology.

Other research work has a dedicated focus on exploration and
visualization of Web data sources. tFacet [1] and gFacet [3] are
tools for faceted exploration of linked data sources via SPARQL
enpoints. The navigation of RDF data for the purpose of visualizing
parts of the data source is studied in [2], but these approaches do
not consider any kind of integration aspects like code generation
and typing.

I Technical ~ Report:
systems/liteq
2The Freebase Wiki about the Schema: http://wiki.freebase.com/
wiki/Schema

http://west.uni-koblenz.de/Research/

3http://semanticweb.org/wiki/Tripresso last visit Nov 10, 2010

4. Conclusion

In this talk, we present several challenges a programmer must over-
come to access and integrate external RDF data sources in his ap-
plication. As a solution to these challenges, we present our inte-
grated approach LITEQ and our language NPQL. A language to
integrate, explore and query linked data via SPARQL endpoints
from within programming environments. We discuss the syntax of
the language, its usage and its semantics at development, compile
and run time of programs. This discussion may be helpful in con-
ducting future research on programming models and programming
environment integrated query languages for accessing and process-
ing large amounts of semantically rich data.

Acknowledgments
This work has been supported by Microsoft.

References

[1] Sren Brunk and Philipp Heim. tFacet: Hierarchical Faceted Explo-
ration of Semantic Data Using Well-Known Interaction Concepts. In
International Workshop on Data-Centric Interactions on the Web (DCI
2011), volume 817 of CEUR-WS.org, pages 31-36, 2011.

Jirf Dokulil and Jana Katreniakovd. Navigation in RDF Data. In /2th
International Conference on Information Visualisation, pages 26-31.
IEEE Computer Society, 2008.

Philipp Heim, Jiirgen Ziegler, and Steffen Lohmann. gFacet: A
Browser for the Web of Data. In International Workshop on Interact-
ing with Multimedia Content in the Social Semantic Web (IMC-SSW
2008), volume 417 of CEUR-WS, pages 49-58, 2008.

Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconcil-
ing Object, Relations and XML in the .NET Framework. In Stijn
Vansummeren, editor, Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
page 706, Chicago, Illinois, June 2006. ACM Press.

Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan
Decker. Activerdf: object-oriented semantic web programming. In
Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and
Prashant J. Shenoy, editors, WWW, pages 817-824. ACM, 2007.

Alexander Paar and Denny Vrandecic. Zhi# - OWL Aware Compila-
tion. In The Semanic Web: Research and Applications - 8th Extended
Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece,
May 29 - June 2, 2011, Proceedings, Part II, volume 6644 of LNCS,
pages 315-329. Springer, 2011.

Fernando Silva Parreiras, Carsten Saathoff, Tobias Walter, Thomas
Franz, and Steffen Staab. ‘a gogo: Automatic Generation of Ontology
APIs. In [EEE Int. Conference on Semantic Computing. IEEE Press,
2009.

Tirdad Rahmani, Daniel Oberle, and Marco Dahms. An adjustable
transformation from owl to ecore. In Dorina C. Petriu, Nicolas Rou-
quette, and ystein Haugen, editors, MoDELS (2), volume 6395 of Lec-
ture Notes in Computer Science, pages 243-257. Springer, 2010.

[2

—

[3

=

[4

=

[5

=

[6

=

[7

—

[8

[t}

[9

—

Stefan Scheglmann, Ansgar Scherp, and Steffen Staab. Declarative
representation of programming access to ontologies. In Elena Sim-
perl, Philipp Cimiano, Axel Polleres, scar Corcho, and Valentina Pre-
sutti, editors, ESWC, volume 7295 of LNCS, pages 659-673. Springer,
2012.

[10] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher, J. Hu, T. Liu,
B. McNamaa, D. Quirk, M. Taveggia, W. Chae, U. Matsveyeu, and
T. Petricek. F# 3.0 — Strongly Typed Language Support for Internet-
Scale Information Sources. Technical Report MSR-TR-2012-101,
Microsoft Research, 2012.

